Cross-Site Scripting Attack 1

Cross-Site Scripting Attack

Copyright © 2017 by Wenliang Du, All rights reserved.
Personal uses are granted. Use of these problems in a class is granted only if the author’s
book is adopted as a textbook of the class. All other uses must seek consent from the author.

W31

W3.2.

W3.3.

W34,

W3.5.

W3.6

W3.7.

. Using LiveHTTPHeader, we find out that the following GET request is used to send an
HTTP request to www . example . comto delete a page owned by a user (only the owner
of a page can delete the page).

http://www.example.com/delete.php?pageid=5

GET /delete.php?pageid=5
Host: www.example.com

Please write a malicious JavaScript program, which can delete a page owned by the vic-
tim if the program is injected into one of the victim’s page from www.example.com.

Using LiveHTTPHeader, we find out that the following POST request is used to send
an HTTP request to www . example.com to delete a page owned by a user (only the
owner of a page can delete the page).

http://www.example.com/delete.php

POST /delete.php HTTP/1.1
Host: www.example.com

Content-Length: 8
pageid=5

Please write a malicious JavaScript program, which can delete a page owned by the vic-
tim if the program is injected into one of the victim’s page from www.example.com.

In Listing C.2 of the book (C is the chapter number of the XSS chapter; its actual value
depends on which version of the book you are using), we added a check before sending
the Ajax request to modify Samy’s own profile. What is the main purpose of this check?
If we do not add this check, can the attack be successful? How come we do not have
such a check in the add-friend attack (Listing C.1)?

To defeat XSS attacks, a developer decides to implement filtering on the browser side.
Basically, the developer plans to add JavaScript code on each page, so before data are
sent to the server, it filters out any JavaScript code contained inside the data. Let’s assume
that the filtering logic can be made perfect. Can this approach prevent XSS attacks?

What are the differences between XSS and CSRF attacks?
. Can the secret token countermeasure be used to defeat XSS attacks?

Can the same-site cookie countermeasure for CSRF attacks be used to defeat XSS at-
tacks?

Cross-Site Scripting Attack

W3.8.

W3.9.

W3.10.

W3.11.

W3.12.

W3.13.
W3.14.

To filter out JavaScript code from user input, can we just look for script tags, and
remove them?

* %
If you can modify browser’s behavior, what would you add to browser, so you can help
reduce the risks of XSS attacks?

* k k

There are two typical ways for a program to produce a copy of itself. One way is to get a
copy of itself from outside, such as from the underlying system (e.g., files, DOM nodes)
and from the network. Another way is not to use any help from outside, but instead
generate a copy of itself entirely from the code. There is a name for this approach: it
is called a quine program, which, according to Wikipedia, “is a non-empty computer
program which takes no input and produces a copy of its own source code as its only
output. The standard terms for these programs in the computability theory and com-
puter science literature are self-replicating programs, self-reproducing programs, and
self-copying programs.” The self-replicating JavaScript program shown in Listing 10.3
is not a quine, because it uses document . getElementById () to take an input from
the underlying system.

Please write a quine program, and put it in a user’s profile in E1gg. When anybody visits
this profile, the code will be executed, and it prints out a copy of itself in an alert win-
dow. The Wikipedia site has examples of quine programs in a variety of programming
languages.

If you really want to challenge yourself, please rewrite the code in Listing 10.3, soitis a
quine program, and it can do what exactly the code in Listing 10.3 can do, i.e., adding a
statement and a copy of the worm to the victim’s profile.

The fundamental cause of XSS vulnerabilities is that HTML allows JavaScript code to
be mixed with data. From the security perspective, mixing code with data is very dan-
gerous. XSS gives us an example. Please provide two other examples that can be used
to demonstrate that mixing code with data is bad for security.

Why is the CSP (Content Security Policy) effective in defeating the Cross-Site Scripting
attack? What is the downside of this approach?

Can CSP (Content Security Policy) be used to defeat CSRF attacks? Why or why not?

The following PHP code returns a web page. It also sets the CSP (Content Security Pol-
icy) for the JavaScript code running inside the page. Which JavaScript code is allowed
to execute inside this page.

<?php
$Scspheader = "Content-Security-Policy:".
"default-src ’'self’;".
"script-src ’'self’ ’"nonce-1rA2345’ ’'example.com’".
"
header (Scspheader) ;
?>
<html>
<script type="text/javascript" nonce="1rA2345">
. JavaScript Code ... (1]

Cross-Site Scripting Attack

</script>

<script type="text/javascript" nonce="2rB3333">
JavaScript Code

</script>

<script type="text/javascript">
JavaScript Code

</script>

<script src="script.js"> </script>

<script src="https://example.com/script2.js"> </script>

<button onclick="alert ('hello’)">Click me</button>
</html>

