Virtual Private Network 1

Virtual Private Network

Copyright © 2017, 2022 by Wenliang Du, All rights reserved.
Personal uses are granted. Use of these problems in a class is granted only if the author’s
book is adopted as a textbook of the class. All other uses must seek consent from the author.

N8.1
N8.2

N8.3.

. What are the main differences between SSH tunnel and VPN tunnel?

. To log into Syracuse University’s network, Bob needs to use a TLS-based VPN. After he
has established a VPN tunnel between his machine and Syracuse University’s network
(128.230.0.0/16), he checks the routing table on his computer. Here is what he
sees:

Network

Destination Netmask Gateway Interface
0.0.0.0 0.0.0.0 192.168.0.1 192.168.0.13

127.0.0.0 255.0.0.0 On-1link 127.0.0.1

127.0.0.1 255.255.255.255 On-link 127.0.0.1
128.230.0.0 255.255.0.0 128.230.153.48 128.230.153.80
128.230.153.12 255.255.255.255 192.168.0.1 192.168.0.13
128.230.153.80 255.255.255.255 On-link 128.230.153.80
192.168.0.0 255.255.255.0 On-1link 192.168.0.13
192.168.0.13 255.255.255.255 On-1link 192.168.0.13
192.168.0.255 255.255.255.255 On-link 192.168.0.13

From the above routing information, please answer the following questions (you need to
explain your answer).

(a) What is the IP address of the TUN interface on Bob’s machine?
(b) What is the IP address of Syracuse University’s VPN server?

(c) Whatis the computer’s real IP address, i.e., the IP address assigned to the machine’s
physical network interface card?

(d) Assume that Bob is behind a firewall that blocks him from accessing a web site
(assume that the IP address of the web site is 1.2.3.4). Please describe how Bob
can use Syracuse University’s VPN to bypass the firewall. If changes need to be
made to this routing table, please show exactly what changes Bob needs to make to
achieve the goal.

In Figure 1, Machine X has established a VPN with Machine Y, which is a VPN server
connected to the private network 10.0.20.0/24. With the VPN, a user on Machine X
can now access machines onthe 10.0.20.0/24 network. The user runs the following
command on Machine X: "telnet 10.0.20.100". Figure 1 shows the packet flow
triggered by this command. Please answer the following questions:

(a) What is the relationship between packets @ and @?
(b) What is the relationship between packets ® and @?
(c) What is the source IP and destination IP of packets @, @, ®, and @?



2 Virtual Private Network

(d) What routing entries are needed on Machine X?
(e) What routing entries are needed on Machine Y?
(f) What routing entries are needed on Machine 10.0.20.1007?

(g) If we break the VPN tunnel, what is going to happen to the te1net connection? Is
it going to be broken? After a few seconds, we reconnect the VPN tunnel between
X and Y, what is going to happen?

VPN Program (Point A) VPN Program (Point B)

Telnet 10.0.20.100

Telnet Program Encryption Decryption
UDP 10.0.5.1
TCP Port Socket tun0
; A Y
Kernel Machine X ¥ i Machiney < Kemel
eth 1209.164.131.32 128.230.208.97 I ethl e[h2|
NIC Card ‘ NIC Card ‘ ‘ NIC Card ‘

Internet

10.0.20.100 10.0.20.101

Figure 1: Packet flow over VPN (for Problem N8.3.)

N8.4. A VPN allows Host U on a private network 192.168.60.0/24 to communicate with
Host V on another private network 192.168.80.0/24. See Figure 2 for the VPN
setup. Please describe the following:

(a) What routing entries need to be added to Host U, VPN Client, VPN server, and Host
V? You don’t need to write down the actual command, but you need to describe
those routing entries.

(b) When Host V receives a packet from Host U, what is the source IP address of the
packet?

(c) When VPN server receives a packet from Host U to Host V, via the VPN tunnel,
what is the source and destination IP addresses of the packet?

(d) After the VPN tunnel is set up, when we ping Host V from Host U, please describe
in details how the ICMP echo request packets get to Host V from Host U, and how
the ICMP echo reply packets get back to Host U.

N8.5. When we use VPN to reach Facebook, which is blocked by our firewall, we route our
Facebook-bound packets towards the TUN interface to reach the VPN server via the
tunnel. The VPN server will route our packets towards Facebook (via the Internet).



Virtual Private Network 3

N8.6.

N8.7.

N8.8.

N8.9.

N8.10.

91.2.2.2 128.3.3.3

Internet
VPN Client

tunO tunO 192.168.80.5
10.5.0.21 10.4.0.99

VPN Server

192.168.60.5

| 192.168.80.0/24
192.168.60.0/24

Host U Host V @
192.168.60.6 192.168.80.6
User

Figure 2: Figure for Problem N8.4.

When Facebook sends reply to us, will the packet be sent directly to us (i.e., without
going through the tunnel), or to the VPN server (and then go through the tunnel)? Please
explain why.

A website in California only allows machines in California to access it. The way how
it enforces the rule is to check whether a visitor’s IP address is from California or not.
You live in Syracuse, New York, and you desperately want to visit this website. Please
describe how you can do it.

The following code snippet creates a TUN interface. What are the possible names of this
interface?

tun = os.open ("/dev/net/tun", os.O_RDWR)
ifr = struct.pack(’16sH’, b’abc%d’, IFF_TUN | IFF_NO_PT)
ifname_bytes = fcntl.ioctl (tun, TUNSETIFF, ifr)

When we read from the TUN interface, the sample code in the book uses os . read (tun,
2048) toread at most 2048 bytes from the TUN interface. We know that an IP packet
might be larger than 2048 bytes, so should we increate this number? If so, what should
we increase this number to? The following shows the properties of the TUN interface.

$ ifconfig

tun0: flags=4305<UP,POINTOPOINT, RUNNING, NOARP, MULTICAST>
mtu 1500 inet 192.168.53.99
netmask 255.255.255.0 destination 192.168.53.99

When we read data from the TUN interface, which of the following is most likely the
first byte of the data: (A) 0x12, (B) 0x23, (C) 0x34, (D) 0x45, (E) 0x56?

The "ip route" command shows the following results.

S ip route



Virtual Private Network

N8.11.
N8.12.

N8.13.

N8.14.

N8.15.

N8.16.

N8.17.

default via 10.0.5.1 dev enpOs3 proto dhcp

10.0.5.0/24 dev enp0s3 proto kernel scope link src 10.0.5.5
192.168.53.0/24 dev tunO proto ... src 192.168.53.99
10.0.6.0/24 dev tunO scope link

What will be the source IP of each packet if we send the packet to the following ad-
dresses, respectively.

1.1.1.1.1
2.10.0.5.9
3. 192.168.53.7
4. 10.0.6.6

On the VPN server, why do we need to turn on the IP forwarding?

After setting up the VPN, we run t codump to monitor the traffic on all the interfaces
(Lo, tunO, and eth0). We see the following packets. Please describe which interface
each of the packets come from.

root@client:# tcpdump -n —-i any

IP 10.0.53.99 > 10.0.8.5: ICMP echo request, id 94, seq 282 @
IPp 10.0.7.5.38018 > 10.0.7.11.9090: UDP ®
IP 10.0.7.11.9090 > 10.0.7.5.38018: UDP ®
IP 10.0.8.5 > 10.0.53.99: ICMP echo reply, id 94, seq 282 @
There is a TCP connection between A and B over a VPN. Due to a hardware failure, the
VPN client is down for a few seconds, but it comes up quickly, and reconnects with the
VPN server. Does this affect the TCP connection between A and B?

When we sniff inside a docker container (which is not in the host mode), we can only
capture the packets from/to itself; packets among other existing containers cannot be
captured. What are the reasons?

One of the differences between TAP and TUN interfaces is how they get packets. The
TUN interface relies on routing, i.e., the kernel will route packets to the TUN interface.
How does the TAP interface get packets?

In the sample code provided by the book, the select () system call is used. Why is it
used?

A student implemented the following simple tun client program, which prints out the
packets received on the TUN interface. Unfortunately, the student mistyped the value
for the IFF_NO_PT flag: the correct value should be 0x1000.

TUNSETIFF = 0x400454ca
IFF_TUN = 0x0001
IFF_NO_PI = 0x100

tun = os.open("/dev/net/tun", os.O_RDWR)
ifr = struct.pack(’1l6sH’, b’tun%d’, IFF_TUN | IFF_NO_PI)
ifname_bytes = fcntl.ioctl (tun, TUNSETIFF, ifr)



Virtual Private Network 5

ifname = ifname_bytes.decode ('UTF-8’) [:16].strip ("\x00")
os.system("ip addr add 10.0.53.99/24 dev {}".format (ifname))
os.system("ip link set dev {} up".format (ifname))

while True:
packet = os.read(tun, 2048)
if packet:
pkt = IP (packet)
print (pkt.summary () )

When the student ran "ping 10.0.53.1" from the same machine, the program
printed out strange results. Please study the purpose of the IFF_NO_PI flag using online
resources, and then explain why such results were printed out.

root@aed05427¢c19d: /volumes# ./tun.py
Interface Name: tunO

64.1.81.52 > 10.0.53.99 udp frag:84 / Raw
64.1.80.77 > 10.0.53.99 248 frag:84 / Raw
64.1.80.43 > 10.0.53.99 26 frag:84 / Raw
64.1.79.139 > 10.0.53.99 186 frag:84 / Raw



