Packet Sniffing and Spoofing 1

Packet Sniffing and Spoofing

Copyright © 2017 by Wenliang Du, All rights reserved.
Personal uses are granted. Use of these problems in a class is granted only if the author’s
book is adopted as a textbook of the class. All other uses must seek consent from the author.

Note: the actual chapter number of this chapter is different for different volumes, so it is
represented by a letter C in this document.

N4.1

N4.2.

N4.3.

N4.4.

N4.5.

N4.6.

. In the pcap-based sniffer program shown in the book, we added a check to see whether
handle is NULL or not. When running this program, we get an error message, saying
"NULL: No such device". What is the cause of the problem?

handle = pcap_open_live("ethl", BUFSIZ, 1, 1000, errbuf);
if (handle == NULL) {
perror ("NULL") ;

Error message:
NULL: No such device

In a pcap-based sniffer program, we use the following line to open a pcap session. When
we run the sniffing program, we can only capture the packets in or out of our own com-
puter, but we are not able to capture the packets among other computers that are on the
same network. What could be the cause of this problem?

handle = pcap_open_live ("eth3", BUFSIZ, 0, 1000, errbuf);

Which line in Listing C.4 in the book requires the root privilege (C is the chapter number
of the Packet Sniffing and Spoofing chapter; its actual value depends on which version
of the book you are using)? If you do not run the program with the root privilege, what
is going to happen?

The pcap_setfilter () callinListing C.4 sets the filter inside the kernel, so it seems
that the root privilege is required for this call to be successful. Please design an experi-
ment to either prove or disapprove this hypothesis (C is the chapter number of the Packet
Sniffing and Spoofing chapter; its actual value depends on which version of the book you
are using).

There are two typical approaches for a sniffer program to filter out unwanted packets.
The first approach gets all the packets from the system, and then filters out unwanted
ones, before presenting the results to users (or save to files). The second approach uses
pcap-setfilter to set the filter. Please describe the differences of these two ap-
proaches.

* %

As we have learned that for a program to turn on the promiscuous mode or to simply be
able to sniff packets on the local machine, the program needs to have a special privilege;
normal users do not have that privilege. With this in mind, we checked the privilege of
the wireshark process like the following:

Packet Sniffing and Spoofing

N4.7.

N4.8.

N4.9.

N4.10.

N4.11.

$ pgrep wireshark

7598

$ ps -fp 7598

UIlD PID PPID C STIME TTY TIME CMD

seed 7598 1 0 10:01 2 00:00:01 /usr/bin/wireshark

From the result, we can see that the UID (effective user ID) of the wireshark pro-
cess is seed. We also know that wireshark can capture all the packets on the local
network, regardless of whether a packet is from/to where the program runs. This does
not seem possible based on our knowledge about how sniffers work. Please conduct an
investigation to solve this mystery.

Hint: start packet capturing in wireshark, and then show what child process is launched
by wireshark. You can use the "pstree -p 7598" command to get the IDs of
process 7598’s child processes. Focus on the program executed by the child processes.

The tcpdump program is also a sniffer program, which predates wireshark. This
program only produces text-only outputs or saves the captured packets into files. The
program needs to run with the root privilege. However, it comes with an —Z option, with
which, the t cpdump program will drop privileges (if root) and changes the user ID to
whatever is specified in the option. For example, if we use "-Z seed", the program’s
effective user ID will be dropped to seed. Please explain why this option is provided
and how can the program still work after dropping the privilege.

Based on the investigation conducted in Problem N4.6., please describe how you can
apply the Principle of Least Privilege to reduce the attack surface for the sniffer pro-
gram shown in Listing C.4 (C is the chapter number of the Packet Sniffing and Spoofing
chapter; its actual value depends on which version of the book you are using).

An integer OXxAABBCCDD is stored in a memory address starting from 0x1000. If
the machine is a Big-Endian machine, what is the value stored in addresses 0x1000,
0x1001, 0x1002, and 0x1003, respectively? If the machine is a Little-Endian ma-
chine, how is this integer stored?

A network protocol contains a four-byte integer, specifying the length of the payload in
the packet. The implementation of this protocol has a mistake in it. When a packet is
received, the protocol implementation needs to copy the payload to a buffer. It first copies
the length field from the packet header to a variable, but the program forgets to convert
the number into the host order. Assume the value of this variable is X. The program then
allocates X bytes of memory to hold a copy of the payload. On a Little-Endian machine,
if the payload of a received packet is 255 bytes, how much memory will be allocated?
What is a likely consequence of this mistake?

Please describe the printing result of the following program on (1) a Little-Endian ma-
chine, and (2) a Big-Endian machine.

void main ()
{
int a = 255;
printf ("$u\n", htonl(a));
printf ("$u\n", ntohl (a));
}

Packet Sniffing and Spoofing 3

N4.12. Assume that machines A and B are on the same network 10.3.2.0/24. Machine
A sends out spoofed packets, and Machine B tries to sniff on the network. When Ma-
chine A spoofs packets with a destination 1.2 . 3.4, B can always observe the spoofed
packets. However, when Machine A tries to spoof packets with a destination IP address
10.3.2.30, B cannot see the spoofed packets. There is nothing wrong with the spoof-
ing or sniffing program. Apparently, the spoofed packet has never been sent out. What
could be the reason?

