
Return-to-libc Attack and ROP 1

Return-to-libc Attack and ROP

Copyright © 2017 by Wenliang Du, All rights reserved.
Personal uses are granted. Use of these problems in a class is granted only if the author’s
book is adopted as a textbook of the class. All other uses must seek consent from the author.

S5.1. After using the "-z noexecstack" option to compile a C program, a buffer-overflow
attack that causes the vulnerable program to return to the code on the stack is supposed
to fail, but some students find out that the attack is still successful. What could be the
reason? The students did everything correctly.

S5.2. In the function epilogue, the previous frame pointer, which is stored in the area below
the return address, will be retrieved and assigned to the ebp register. However, when
we overflow the return address, the previous frame pointer region is already modified, so
after the function epilogue, ebp contains some arbitrary value. Does this matter?

S5.3. Instead of jumping to the system() function, we would like to jump to the execve()
function to execute "/bin/sh". Please describe how to do this. You are allowed to
have zeros in your input (assume that memcpy() is used for memory copy, instead of
strcpy())

S5.4. As we know, the system() function calls /bin/sh, which is a symbolic link to
/bin/bash. Recent versions of bash will drop the privilege if it detects that the
effective user ID and the real user ID are different. Assume that we still want to use
system() in our Return-to-libc attack, please describe how you can overcome this
challenge. You are allowed to have zeros in your input (assume that memcpy() is used
for memory copy, instead of strcpy())

S5.5. When launching the return-to-libc attack, instead of jumping to the beginning of the
system() function, an attacker causes the program to jump to the first instruction right
after the function prologue in the system() function. Please describe how the attacker
should construct the input array.

S5.6. Can address space layout randomization help defeat the return-to-libc attack?

S5.7. Does ASLR in Linux randomize the addresses of library functions, such as system()?

S5.8. H
Assuming that we do not have the function system() that we can return to in our
Return-to-libc attack, but we know the instruction sequence A1, ..., Am, B1, ..., Bn,
C1, ..., Ct can spawn a shell for us. If all the instructions in this sequence are located
in contiguous memory, we can simply jump to its beginning. Unfortunately, that is not
the case. The instructions in this sequence actually come from three sub-sequences,
A, B, and C, each of which is found at the end of a function, i.e., there is always a ret
instruction at the end of each sub-sequence. Each sub-sequence’s address is given below:

0xAABB1180: A1, ..., Am, ret
0xAABB2290: B1, ..., Bn, ret
0xAABB33A0: C1, ..., Ct, ret

2 Return-to-libc Attack and ROP

Obviously, when we overflow a buffer, we will place 0xAABB1180 in the return address
field, so when the function returns, it will jump to the beginning of the sub-sequence A.
Please describe what other values that you would place on the stack, so when the sub-
sequence A returns, it will jump to the sub-sequence B, and when the sub-sequence B
returns, it will jump to the sub-sequence C.

What is described above is called Return-Oriented Programming (ROP), which is a gen-
eralized Return-to-libc technique. The Return-to-libc technique depends on the availabil-
ity of some functions such as system(); if such functions are not in the memory, the
technique will not work. With the ROP technique, an attacker can carefully choose ma-
chine instruction sequences that are already present in the machine’s memory, such that
when these sequences are chained together, they can achieve the intended goal. These
sequences are called gadgets, which typically end in a return (ret) instruction and
are located in a subroutine within the existing program and/or shared library code. The
ret instruction is necessary, because the ROP technique depends on it to jump from one
sub-sequence to another. ROP gadgets can be chained together to allow an attacker to
perform arbitrary operations. Using ROP, the attacker does not need to call functions to
mount an attack.

S5.9. Function foo() has a buffer overflow problem when copying your input to a buffer
that is inside its stack frame. We would like to get it to return to a sequence of function
calls: bar() Ù bar() Ù bar() Ù xyz(3, 5) Ù exit(). Assuming we
know their address. Please describe how you would use the buffer overflow problem to
construct the stack before letting foo() return. You should provide a stack diagram in
your answer.

| |
| provide |
| your |
| answer |
| |
| | <-- ebp of foo()

S5.10. Function foo() has a buffer overflow problem when copying your input to a buffer that
is inside its stack frame. You would like to get it to return to a library function xyz(0).
You cannot skip xyz()’s function prologue); nor can you put any zero in your input.
There is another library function called setzero(addr), which can set the 4-byte
memory at address addr to zero. Please describe how you would construct your input.
We do not care whether the program will crash or not after xyz(0) returns. You should
provide a stack diagram in your answer.

| |
| provide |
| your |
| answer |
| |
| | <-- ebp of foo()

S5.11. The problem adds an additional requirement to Problem S5.10.. Function foo() has a
buffer overflow problem when copying your input to a buffer that is inside its stack frame.

Return-to-libc Attack and ROP 3

You would like to get it to return to a library function sequence xyz(0x11111111)Ù
xyz(0) Ù xyz(0x22222222). You cannot skip xyz()’s function prologue); nor
can you put any zero in your input. There is another library function called setzero(addr),
which can set the 4-byte memory at address addr to zero. Please describe how you
would construct your input. We do not care whether the program will crash or not after
xyz(1) returns. You should provide a stack diagram in your answer.

