
Format String Vulnerability 1

Format String Vulnerability

Copyright © 2017 by Wenliang Du, All rights reserved.
Personal uses are granted. Use of these problems in a class is granted only if the author’s
book is adopted as a textbook of the class. All other uses must seek consent from the author.

S6.1. Please write a function that takes a variable number of strings as its arguments, and prints
out their total length.

S6.2. Both buffer-overflow and format-string vulnerabilities can lead to the modification of
the return address field, but the ways how the field is modified are different in these two
attacks. Please describe their difference, and comment on which one is less restricted.

S6.3. Can we use the StackGuard idea to protected against format-string attacks?

S6.4. When printf(fmt) is executed, the stack (from low address to high address) contains
the following values (4 bytes each), where the first number is the content of the variable
fmt, which is a pointer pointing to a format string. If you can decide the content of the
format string, what is the smallest number of format specifiers that you can use crash the
program with a 100 percent probability?

0xAABBCCDD, 0xAABBDDFF, 0x22334455, 0x00000000, 0x99663322

S6.5. A server program takes an input from a remote user, saves the input in a buffer allo-
cated on the stack (Region Ë in Figure 1). The address of this buffer is then stored in
the local variable fmt, which is used in the following statement in the server program:
printf(fmt).

When this statement is executed, the current stack layout is depicted in Figure 1. If you
are a malicious attacker, can you construct the input, so when the input is fed into the
server program, you can get the server program to execute your code? Please write down
the actual content of the input (you do not need to provide the exact content of the code;
just put “malicious code” in your answer, but you need to put it in the correct location).

S6.6. If your answer to Problem S6.5. causes the server to print out more than a billion char-
acters, it may take a while for your attack to succeed. Please revise your answer, so the
total number of characters printed out is less than 80,000.

S6.7. The problem is based on Problem S6.5. What if the distance between Region Ë and
Region Ì in Figure 1 is not 28 bytes, but instead it is 26 bytes? This number is not
divisible by 4, but each %x format string specifier does move the format string pointer
by four bytes. Please construct your format string.

S6.8. H
The problem is based on Problem S6.5. The difference is that we do not know exactly
where the return address is stored. We only know that it is stored in one of the following
addresses: 0xAABBCDA0, 0xAABBCDA4, 0xAABBCDA8, or 0xAABBCDAC.

1. Please construct one format string to exploit the vulnerability, such that your attack
will be successful regardless of which of the address is the right one. The total
number of characters printed out must be less than 80,000.



2 Format String Vulnerability

Data in this region are 
provided by users

28 bytes

2

fmt 3

0xAABBCCDD

0xAABBCDA6
Return Address 1

Figure 1: Stack Layout for Problem S6.5.

2. What is the shortest format string that you can come up with (the total number of
characters printed out must be less than 80,000).

S6.9. Compilers can give a warning if it detects that the number of arguments in printf()
does not match with the number of format specifiers. Please comment on the limitation
of this countermeasure.

S6.10. Since printf() does not require any privilege, we can temporarily disable the pro-
gram’s privilege before we execute this statement; this way, even if the format-string
vulnerability is exploited, attackers will not be able to gain much privilege. Please com-
ment on this idea.

S6.11. If we make the stack non-executable, can we still exploit the format string vulnerability
to get the victim program to spawn a shell?

S6.12. We are going to exploit a format-string vulnerability using the return-to-libc technique.
Please describe in details what part of the stack needs to be modified and how you can
achieve that by exploiting a format-string vulnerability. Please use Figure 1 when de-
scribing your solution.

S6.13. What if we want to write a small number such as 0 to a target address using a format-
string vulnerability, but due to the %x’s that we have to place in the format string, the
number of characters printed out by printf() is already nonzero before the va list
pointer reaches the target address. Is it still possible to write 0 to the target address?


