
Buffer Overflow Attack 1

Buffer Overflow Attack

Copyright © 2017 by Wenliang Du, All rights reserved.
Personal uses are granted. Use of these problems in a class is granted only if the author’s
book is adopted as a textbook of the class. All other uses must seek consent from the author.

S4.1. How are the addresses decided for the following variables a and x, i.e., during the run-
time, how does the program know the address of these two variables?

void foo(int a)
{

int x;
}

S4.2. In which memory segments are the variables in the following code located?

int i = 0;
void func(char *str)
{

char *ptr = malloc(sizeof(int));
char buf[1024];
int j;
static int y;

}

S4.3. Please draw the function stack frame for the following C function.

int bof(char *str)
{

char buffer[24];
strcpy(buffer,str);
return 1;

}

S4.4. A student proposes to change how the stack grows. Instead of growing from high address
to low address, the student proposes to let the stack grow from low address to high
address. This way, the buffer will be allocated above the return address, so overflowing
the buffer will not be able to affect the return address. Please comment on this proposal.

S4.5. In the buffer overflow example shown in the book (i.e., the vulnerable stack.c pro-
gram), the buffer overflow occurs inside the strcpy() function, so the jumping to the
malicious code occurs when strcpy() returns, not when foo() returns. Is this true
or false? Please explain.

S4.6. The buffer overflow example was fixed as below. Is this safe ?

int bof(char *str, int size)
{

char *buffer = (char *) malloc(size);

/* The following statement has a buffer overflow problem */



2 Buffer Overflow Attack

strcpy(buffer, str);

return 1;
}

S4.7. Several students had issue with the buffer overflow attack. Their badfile was constructed
properly, with the shellcode being put at the end of badfile. However when they try
different return addresses, they get the following observations. Can you explain why
some addresses work and some do not?

buffer address : 0xbffff180
case 1 : retAddr = 0xbffff250 -> Able to get shell access
case 2 : retAddr = 0xbffff280 -> Able to get shell access
case 3 : retAddr = 0xbffff300 -> Cannot get shell access
case 4 : retAddr = 0xbffff310 -> Able to get shell access
case 5: retAddr = 0xbffff400 -> Cannot get shell access

S4.8. The following function is called in a privileged program. The argument str points to a
string that is entirely provided by users (the size of the string is up to 300 bytes). When
this function is invoked, the address of the buffer array is 0xAABB0010, while the
return address is stored in 0xAABB0050. Please write down the string that you would
feed into the program, so when this string is copied to buffer and when the bof()
function returns, the privileged program will run your code. In your answer, you don’t
need to write down the injected code, but the offsets of the key elements in your string
need to be correct. Note: there is a trap in this problem; some people may be lucky and
step over it, but some people may fall into it. Be careful.

int bof(char *str)
{

char buffer[24];
strcpy(buffer,str);
return 1;

}

S4.9. H H H
In this problem, we will figure out how overflowing a buffer on the heap can lead to the
execution of malicious code. The following is a snippet of a code execution sequence
(not all code in this sequence is shown here). During the execution of this sequence,
the memory locations of buffer and the node p, which are allocated on the heap, are
depicted in Figure 1. You can provide your input (up to 300 bytes) in user input,
which will be copied to buffer. Your job is to overflow the buffer, so when the target
program gets to Line Ì, it will jump to the code that you have injected into the heap
memory (assuming that the heap memory is executable). The return address is stored at
location 0xBBFFAACC.



Buffer Overflow Attack 3

Address A: 0x804B2220

next

buffer

pre

p Address B: 0x804B22C0

Figure 1: Figure for Problem S4.9.

struct Node
{
struct Node *next;
struct Node *pre;

};

// The following is a snippet of a code execution sequence.

struct Node *p = malloc(sizeof(struct Node));
struct Node *q;
char *buffer = malloc(100);

/* Code omitted: Add Node p to a linked list */

// There is a potential buffer overflow in the following
strcpy(buffer, user_input);

// remove Node p from the linked list
q = p->pre; Ê

q->next = p->next; Ë

return; Ì

Hint: You still want to place the starting address of your malicious code into the re-
turn address field located at 0xBBFFAACC. Unlike stack-back buffer overflows, where
you can naturally reach the return address field via overflowing, now the buffer is on
the heap, but the return address is on the stack; you cannot reach the stack by overflow-
ing something on the heap. You should take advantage of the operations on the linked



4 Buffer Overflow Attack

list (Lines Ê and Ë) to modify the return address field.

This is a simplified version of how a buffer overflow on the heap can be exploited. The
linked list is not part of the vulnerable program; it is actually part of the operating system,
which uses it to manage the memory on the heap for the current process. Unfortunately,
the linked list is also stored on the heap, so by overflowing an application’s buffer, at-
tackers can change the values on this linked list. When the OS operates on the corrupted
linked list, it may change the return address of function, and trigger the execution of the
injected code.

S4.10. This problem is built on top of Problem S4.9.. Assume that the structure for Node
becomes the following (a new integer field is added to the beginning). Please redo Prob-
lem S4.9. It should be noted that in Figure 1, the variable p will now point to the area 4
bytes below the next field.

struct Node
{
int value;
struct Node *next;
struct Node *pre;

};

S4.11. Why does ASLR make buffer-overflow attack more difficult?

S4.12. H
To write a shellcode, we need to know the address of the string "/bin/sh". If we
have to hardcode the address in the code, it will become difficult if ASLR is turned on.
Shellcode solved that problem without hardcoding the address of the string in the code.
Please explain how the shellcode in exploit.c (Listing 4.2) achieved that.

S4.13. When you construct the attack string in Problem S4.8., you have many choices when
deciding what value to put in the return address field. What is the smallest value that you
can use?

S4.14. H
The following function is called in a remote server program. The argument str points
to a string that is entirely provided by users (the size of the string is up to 300 bytes).
The size of the buffer is X, which is unknown to us (we cannot debug the remote
server program). However, somehow we know that the address of the buffer array
is 0xAABBCC10, and the distance between the end of the buffer and the memory hold-
ing the function’s return address is 8. Although we do not know the exact value of X, we
do know that its range is between 20 and 100.

Please write down the string that you would feed into the program, so when this string
is copied to buffer and when the bof() function returns, the server program will run
your code. You only have one chance, so you need to construct the string in a way such
that you can succeed without knowing the exactly value of X. In your answer, you don’t
need to write down the injected code, but the offsets of the key elements in your string
need to be correct.

int bof(char *str)
{



Buffer Overflow Attack 5

char buffer[X];
strcpy(buffer,str);
return 1;

}


