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Chapter 36

Transport Layer Security

Nowadays more and more data transmissions are done through the Internet. However, when data

are transmitted over such a public network unprotected, they can be read or even modified by

others. Applications worrying about the security of their communication need to encrypt their

data and detect tampering. Cryptographic solutions can be used to achieve this goal. There are

many cryptographic algorithms, and even for the same algorithm, there are many parameters that

can be used. To achieve interoperability, i.e., allowing different applications to communicate

with one another, these applications need to follow a common standard. TLS, Transport Layer

Security, is such a standard.

In this chapter, we first discuss how Transport Layer Security works. We specifically focus

on the two most important aspects of TLS: handshake and data transmission. We show how two

communicating peers can establish a secure channel between themselves, including deciding on

the cryptographic algorithms to use, verifying certification, finding common session keys, etc.

Once the channel is established, we show how data are transmitted via the channel, and what

TLS does to the data inside the secure channel.

We would also like readers to know how to use TLS in their programs, so in the second part

of this chapter, we implement two programs, a simple HTTPS client that can get web pages

from real-world web servers, and an HTTPS server that can provide pages to browsers. We also

show some common mistakes made by developers when using TLS. To better understand the

content in this chapter, we suggest that readers study the public-key cryptography and public-key

infrastructure first, because TLS depends on them.
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36.1 Overview of TLS
Transport Layer Security (TLS) is a protocol that provides a secure channel between two

communicating applications so that the data transmission in this channel is private and its

integrity is preserved. TLS evolved from its predecessor SSL (Secure Sockets Layer), and is

gradually replacing SSL. SSL was developed by Netscape to secure web communication. When

the SSL protocol was standardized by the IETF, it was renamed to Transport Layer Security.

SSL version 3.0, which is the most recent version of SSL defined in RFC 6101 [Freier et al.,

2011], was deprecated in June 2015 and replaced by TLS. For this historic reason, the terms

SSL, TLS, or TLS/SSL are used interchangeably. Technically, TLS and SSL are different

protocols. In this chapter, we focus on TLS. At the time of writing, TLS version 1.2, defined in

RFC 5246 [Dierks and Rescorla, 2008], is the most widely used version; TLS version 1.3 was

defined in RFC 8446 [Rescorla, 2018] in August 2018.

The secure channel provided by TLS has the following three properties.

• Confidentiality: Nobody other than the two ends of the channel can see the actual content

of the data transmitted via the channel.

• Integrity: If data are tampered by others during the transmission, the channel should be

able to detect it.

• Authentication: In a typical scenario, at least one end of the channel (usually the server

end) needs to be authenticated, so the other end (usually the client end) can be sure that it

is communicating to the intended host. Without a proper authentication, the client might

be unknowingly establishing a protected channel with an attacker.

TLS sits between the Application Layer and the Transport Layer, as Figure 36.2 shows.

Unprotected data from an application are given to the TLS layer, which handles the encryption,

decryption, and integrity checking tasks. TLS then gives the protected data to the underlying

Transport layer for transmission. TLS is designed to run on top of the TCP protocol; however,

it has also been implemented with datagram-oriented transport protocols, such as UDP. TLS

over UDP has been standardized independently using the term Datagram Transport Layer

Security (DTLS) [Rescorla and Modadugu, 2012].

TLS is a layered protocol, consisting of two layers. The bottom layer of TLS is called

Record Layer, and the protocol at this layer is called TLS Record Protocol, which defines the

format of the records used by TLS. When a host sends out a TLS message, whether the message

is a control message or a data message, TLS puts the message in records. Each record contains

a header, a payload, an optional MAC, and a padding (if needed). See Figure 36.1.

Content 
Type Version Protocol Messages

1 byte

Length MAC 
(optional)

Padding 
(if needed)

2 bytes2 bytes

TLS header TLS payload (may be encrypted)

Figure 36.1: TLS record

The protocol messages field carries the actual message, the type of which is specified in the

type field of the header. There are five message protocols in TLS, including the Handshake,

Alert, Change Cipher Spec, Heartbeat, and Application Protocols. See Figure 36.2.
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Figure 36.2: TCP/IP network stack with the TLS layer

The Alert protocol is used for peers to send signal messages to each other; its primary

purpose is to report the cause of a failure. The Change Cipher Spec protocol is used to change

the encryption method being used by the client and server. It is normally used as part of the

handshake process to switch to symmetric key encryption. The Heartbeat protocol is used to

keep TLS sessions alive. The most important protocols in TLS are the Handshake protocol and

the Application protocol. The Handshake protocol is responsible for establishing the secure

channel (including key agreement), while the Application protocol is used for actual data

transmission using the channel. We will only focus on these two protocols in this chapter.

36.2 TLS Handshake (Version 1.2)
Before a client and a server can communicate securely, several things need to be set up first,

including what encryption algorithm and key will be used, what MAC algorithm will be used,

what algorithm should be used for the key exchange, etc. These cryptographic parameters

need to be agreed upon by the client and the server. That is the primary purpose of the TLS

Handshake Protocol. In this section, we give an overview of the protocol, while emphasizing on

two of its essential steps: certificate verification and key generation. Our discussion is based on

TLS Version 1.2 [Dierks and Rescorla, 2008].

36.2.1 Overview of the TLS Handshake Protocol
The purpose of the TLS Handshake protocol is for the client and the server to agree upon

cryptographic parameters, including cryptographic algorithms, session keys, and various other

parameters. Figure 36.3 illustrates the steps of the TLS Handshake protocol. Details are further

explained in the following.

• Client: Send a Client Hello message. When a client tries to establish a TLS connec-

tion with a server, it first sends a TLS hello message to the server. In this message, it tells

the server which cipher suites are supported by the client. Moreover, it provides a random

string called client random, which serves as a nonce for the key generation.
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Figure 36.3: TLS handshake protocol

• Server: Send a Server Hello message. Once the server receives the hello message

from a client, it selects a cipher suite that is supported by both client and server, and sends

back a message to inform the client about the decision. Moreover, it provides a random

string called server random, which also serves as a nonce for the key generation.

• Server: Send its certificate: The server sends its public-key certificate to the client. The

certificate needs to be verified by the client, and the verification is crucial for security. We

will provide the details of the verification in §36.2.2.

• Server: Send a Server Hello Done message, indicating that it is done with the

handshake negotiation.

• Client: Send a Client Key Exchange message. The client generates a random pre-

master secret, encrypts it using the server’s public key obtained, and sends the encrypted

secret to the server. Both client and server first use the pre-master secret to generate a

master secret, and then further use the master secret to generate session keys, which will

be used to secure the communication between the client and the server. Details of the key

generation will be provided in §36.2.3.

• Client and Server: The client sends a Change Cipher Spec message to the server,

telling the server that further communication from client to server will be authenticated and

encrypted. The server does the same by sending a Change Cipher Spec message to

the client.

• Client and Server: The client sends an encrypted Finished message, containing a hash

and MAC over the previous handshake messages. The server will decrypt the message and

verify the hash and MAC. If the verification fails, the handshake protocol fails, and the
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TLS connection will not be established. The server does the same by sending a Finished

message to the client, which conducts the same verification.

Using Wireshark, we have captured the packets exchanged between a client and a server

during the TLS handshake protocol. Table 36.1 shows the result. TLS runs on top of TCP, so

before the TLS protocol runs, a TCP connection needs to be established first. Packets No.1 to

No.3 are for the TCP three-way handshake protocol, which establishes a connection between

the client and the server. After the connection is established, the client and the server run the

TLS handshake protocol (Pakcets 4 to 9). Note that some of the steps in the protocol are carried

out using a single packet.

No. Source Destination Protocol Info

1 10.0.2.45 10.0.2.35 TCP 59930 –> 11110 [SYN] Seq=0 Win=14600 Len=0 MSS=1460...

2 10.0.2.35 10.0.2.45 TCP 11110 –> 59930 [SYN, ACK] Seq=0 Ack=1 Win=14480...

3 10.0.2.45 10.0.2.35 TCP 59930 –> 11110 [ACK] Seq=1 Ack=1 Win=14720 Len=0...

4 10.0.2.45 10.0.2.35 TLSv1.2 Client Hello

6 10.0.2.35 10.0.2.45 TLSv1.2 Server Hello, Certificate, Server Hello Done

8 10.0.2.45 10.0.2.35 TLSv1.2 Client Key Exchange, Change Cipher Spec, Finished

9 10.0.2.35 10.0.2.45 TLSv1.2 New Session Ticket, Change Cipher Spec, Finished

Table 36.1: TLS traffic captured by Wireshark

36.2.2 Certificate Verification

In the TLS Handshake Protocol, the client generates a secret (called pre-master secret) and

sends it to the server. Both sides will use this secret to generate session keys, which are used for

encryption and MAC. The pre-master secret has to be protected when it is sent to the server,

so adversaries cannot see the secret. This protection is achieved using public-key encryption.

Namely, the server sends its public key to the client, who uses this public key to encrypt the

pre-master secret. As we have learned from the public-key infrastructure, directly sending a

public key over the network is subject to man-in-the-middle attacks. Instead, the server should

send a valid public key certificate to the client. The certificate contains the server’s public key

and identity information, an expiration date, a CA’s signature, and other relevant information.

When the client receives the server’s certificate, it needs to ensure that the certificate is

valid. The validation involves several checks, including checking the expiration date and most

importantly, checking that the signature is valid. The signature checking requires the client to

have the signing CA’s public-key certificate. Client programs, such as browsers, need to load a

list of trusted CA certificates beforehand, or they will not be able to verify any certificate. If

the signing CA is on this list, the certificate can be directly verified; if not, the server needs to

provide the certificates of all the intermediate CAs, so the client can verify them one by one,

and eventually verify the server’s certificate.

It should be noted that the above TLS validation only checks whether a certificate is valid or

not, it does not check whether the identity information contained in the certificate matches with

the identity of the intended server. The latter check is also essential for security, but it is the

responsibility of applications. Without this check, we may be talking to attacker32.com,

which impersonates the intended server facebook.com. The impersonator can provide a

valid certificate of its own, and the certificate can pass TLS’s validation, even though it has

nothing to do with facebook.com. We will explain this in more details in §36.6.
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36.2.3 Key Generation and Exchange

Although public-key algorithms can be used to encrypt data, it is much more expensive than

secret-key encryption algorithms. For this reason, TLS only uses public-key cryptography for

key exchange, i.e., enabling a client and a server to agree upon some common secret for key

generation. Once the keys are generated, the client and server will switch to a more efficient

secret-key encryption algorithm. The entire key generation consists of three steps: generating

pre-master secret, generating master secret, and finally generating session keys. Figure 36.4

illustrates these three steps.

client_random

server_random

pre_master_secret

client_random

server_random

master_secret
(48 bytes)

32
bytes

32
bytes

32
bytes

32
bytes

client_write_MAC_key client_write_key

server_write_MAC_key server_write_key

Master Secret Generation Master Secret Expansion Session Keys Generation

Figure 36.4: TLS key generation (master Secret and session keys)

Pre-master secret. After the server certificate has been verified successfully, the client pro-

gram generates a random number, which is called pre-master secret. The length of the number

depends on the key exchange algorithm. The secret, encrypted with the server’s public key,

is sent to the server. Since only the server has the corresponding private key, the encrypted

pre-master secret can only be decrypted by the server. Therefore, the pre-master secret is only

known to the client and the server.

Master secret. During the initial steps, the client and the server have exchanged two random

numbers (nonces), client random and server random. Using these two numbers and

the pre-master secret, both client and server generate another secret, called master secret, which

is 48 bytes long.

Session keys. The master secret is then used to generate a sequence of bytes according to the

cipher algorithm. This sequence is further split into four separate keys: two MAC keys and

two encryption keys. The client write keys (for both MAC and encryption) are used to

secure the data from the client to the server, while the server write keys are used to secure

the data from the server to the client. The communication between the client and the server

is bidirectional, and each direction uses its own keys for MAC and encryption. Figure 36.4

assumes that the cipher suite AES 256 CBC SHA is used, so the key size is 32 bytes (256 bits).
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Key generation in TLS renegotiation. TLS allows either the client or the server to initiate

renegotiation to establish new cryptographic parameters, such as changing session keys. Instead

of requiring the client and the server to conduct another round of handshake protocol, TLS

provides an abbreviated handshake protocol for the renegotiation purpose. In the abbreviated

protocol, the client and the server generate a new client random and server random,

respectively, and send their numbers to each other. They then repeat the Master Secret Expansion

and Session Keys Generation steps as shown in Figure 36.4. The mater secret used in the process

is the same as the one generated from the full handshake protocol, so there is no need for

resending the server certificate or the pre-master secret. The abbreviated handshake simplifies

the handshake process and improves the efficiency.

36.3 TLS Handshake (Version 1.3)
TLS 1.3 was defined in RFC 8446 [Rescorla, 2018] in August 2018. It is based on the earlier

TLS 1.2 specification, but it made many improvements over 1.2, especially in the Handshake

protocol. We summarize some of the major differences in the following.

• The static RSA and static Diffie-Hellman key exchanges are no longer supported, because

they do not provide perfect forward secrecy. In these two algorithms, the private key

is static and will not change for different sessions. Therefore, if the private key is

compromised in the future, all the session keys in the past will be compromised (if the

attacker has recorded all the past sessions). In cryptography, this means they do not satisfy

the perfect forward secrecy requirement. In TLS 1.3, this requirement is mandatory.

• TLS 1.3 uses the Ephemeral Diffie-Hellman for key exchange, which uses a new temporary

Diffie-Hellman private key for every session. At the end of the session, the key is discarded.

Therefore, it has perfect forward secrecy.

• The performance of the Handshake protocol is improved. In TLS 1.2, the client sends

the Client Hello message to the server, waits for the server to select the key exchange

protocol (part of the cipher suite) from the proposed list, and then starts the key exchange

with the server. In TLS 1.3, the client makes a guess of what cipher suites that the server

might select, and starts the key exchange protocol based on the guesses. Therefore, the

key exchange starts in the Client Hello message. If the guess is wrong, the server will

inform the client about its choice, and the client can redo the key exchange. If the guess

is correct, one round of communication is saved.

• Because of the improvement in the key exchange, after one round of communication, both

client and server will be able to agree upon the session key, so all the communication

after the Server Hello step can be encrypted using the session key. In TLS 1.2, two rounds

of communication are needed before the encryption can start.

Authentication. In TLS 1.2, when the RSA algorithm is used in the key agreement, the server

certificate simultaneously serves two goals: (1) providing the server’s public key to the client for

the key exchange, (2) providing the certified server name to the client for authentication. This is

the benefit of using a static public key algorithm. Since the public/private keys are static, one

can obtain a certificate for the public key. If we use an ephemeral algorithm, we can no longer

do this, because the public/private keys are for one-time use, and it is impractical to get a public

key certificate for a one-time key.
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Therefore, in TLS 1.3, the key agreement and authentication algorithms are separated. The

Ephemeral Diffie-Hellman protocol is used only for the key agreement, while the authentication

is still based on the algorithms like RSA and public-key certificates. It should be emphasized

that without the authentication part, the Ephemeral Diffie-Hellman protocol is subject to the

man-in-the-middle attack. The Public Key Infrastructure (PKI) and certificates are created to

defeat such an attack.

During the authentication, in addition to checking the server name, the server also needs to

put a signature on all the handshake messages received from the client, and sends the signature to

the client. The client will use the public key from the certificate to verify the signature, checking

whether the messages received by the server are the same as what the client has sent out. This

verification is essential, because the man-in-the-middle attack requires making changes to the

key exchange messages. The signature will help detect any change made by the attacker.

36.4 TLS Data Transmission
Once a client and a server have finished their TLC Handshake protocol, they can start exchanging

application data. Data are transferred using records, the format of which is defined by the TLS

Record protocol. Records are not only used for transferring application data; messages in the

Handshake protocol are also transferred using records. Each record contains a header and a

payload. There are three fields in the header.

• Content Type: TLS contains several protocols, including Alert, Handshake, Application,

Hearbeat, and ChangeCipherSpec protocols. They all use the TLS Record Protocol to

transfer data. The Content Type field indicates what type of protocol data is carried by

the current record.

• Version: This field identifies the major and minor version of TLS for the contained

message. As of 2022, TLS supports the following versions: SSL 3.0, TLS 1.0, TLS 1.1,

TLS 1.2, and TLS 1.3.

• Length: The length of the payload field, not to exceed 214 bytes.

In this section, we focus on the Application record type, which is used to transfer application

data between a client and a server. The format of the record is depicted in Figure 36.5. The

Content Type field for application records is 0x17, while the Length field contains the length

of the contained application data, excluding the protocol header but including the MAC and

padding trailers.

Content
Type Version Data (may be compressed)

1 byte

Length MAC Padding

2 bytes2 bytes n bytes m bytes k bytes

TLS header TLS payload (Encrypted)

Figure 36.5: Record format of the TLS Record Protocol
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36.4.1 Sending Data with TLS Record Protocol
To send data over TLS, applications invoke the SSL write() API, which breaks data into

blocks, and generates a MAC for each block before encrypting the block. TLS then puts

each encrypted block into the payload field of a TLS record, and then gives the record to the

underlying transport layer for transmission. Figure 36.6 depicts the entire flow. We further

explain each step in the following.

Application Data

Data Block 1

Application Data

Data Block 1 Data Block 2

Compressed Data

Compressed Data MAC Padding

Encrypted Data

Encrypted DataTLS
Header ...

Encrypted DataTLS
Header

Encrypted DataTLS
Header

Get data from
application

Application
Layer

Fragment

Compress
(optional)

Add MAC
and padding

Encrypt

Add
TLS header

TLS Layer

...

Transport Layer
(TCP Stream)

SSL_write()

write()

Figure 36.6: Sending data with TLS record protocol

• Fragment data: fragment the data to be sent into blocks of 214 bytes or less.

• Compress data (optionally): compress each block if required. This step is optional; by

default, TLS uses the standard method CompressionMethod.null, which does not

compress data.

• Add MAC: use the MAC key to calculate the MAC of the data. Each record has a sequence

number, which is included in the MAC calculation.

• Add padding: for some block ciphers, if the total size of the data plus the MAC is not an

integral multiple of the block cipher’s block length, padding will be added.

• Encrypt data: encrypt the data, MAC, and padding using the encryption key. For block

ciphers, a random IV (Initial Vector) is used and it is put at the beginning of the payload

field (IV is not encrypted).

• Add TLS Header: add the TLS header to the payload.

After a TLS record is constructed, TLS writes the record to the TCP stream using APIs

such as write(). TCP will be responsible for sending out the data. TCP does not observe the

boundary of the records; it simply treats the records as part of its data stream.
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36.4.2 Receiving Data with TLS Record Protocol

When an application needs to read data from the TLS channel, it calls the TLS API SSL read(),

which calls the system call read() to read one or multiple records from the TCP stream, de-

crypt them, verifies their MAC, decompress the data (if needed), before giving the data to the

application. Figure 36.7 depicts the entire process.

Remember that as the term “record protocol” implies, TLS Record protocol processes data

based on records. Only when a TLS record is completely received, it can be processed. Once

a record is taken out of the TCP stream, even if the application’s SSL read() request does

not consume all the data in the record, the leftover cannot be saved back to the TCP stream; it

must be buffered in a different place for the next SSL read() request. TLS provides a buffer

to handle this situation, which buffers unused application data.

TLS Record n TLS Record n+1 ...

TCP Buffer

Decrypt,
Check integrity,
Decompress

...

TLS Buffer

Plaintext Data

m bytes

buffered

SSL_read()

read()

Figure 36.7: Reading data with TLS record protocol

When SSL read() is called and the TLS buffer is empty, one TLS record is retrieved from

the TCP buffer and processed. If the number of bytes is not enough to satisfy the request, one

more TLS record will be retrieved from the TCP buffer and processed. This will repeat until the

request is satisfied or no more data is available in the TCP buffer. If the total number of bytes

processed by TLS ends up exceeding what is requested by the application, the leftover will be

stored in the TLS buffer for later read requests.

When SSL read() is called and the TLS buffer is not empty, TLS tries to get the requested

amount of data from the TLS buffer. If the buffer contains enough data, TLS just delivers the

requested amount of data to the application; if the TLS buffer does not have enough data for the

request, TLS returns all the data in the buffer to the application. The next SSL read() request

will start with an empty TLS buffer, and it follows the same procedure described earlier.

36.5 TLS Client Program in Python
Now we have understood how the TLS protocol works. We would like to use the protocol to

secure the communication between a client and a server. In this section, we focus on the client
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side. We implement a client program to communicate with real-world web servers using the

TLS protocol.

36.5.1 TLS Setup and Handshake
We first give a TLS client program in the following.

Listing 36.1: tls client.py

#!/usr/bin/env python3

import socket, ssl, sys, pprint

hostname = sys.argv[1] # Get the server’s hostname

# Set up the TLS context
context = ssl.SSLContext(ssl.PROTOCOL_TLS_CLIENT)
context.load_verify_locations(capath=’/etc/ssl/certs’) �

context.verify_mode = ssl.CERT_REQUIRED �

context.check_hostname = True �

# Create TCP connection
sock = socket.socket(socket.AF_INET, socket.SOCK_STREAM)
sock.connect((hostname, 443))

# Bind the TLS to thE TCP and start TLS handshake
ssock = context.wrap_socket(sock, server_hostname=hostname,

do_handshake_on_connect=False)
ssock.do_handshake() # Start the handshake

# Print out TLS information (cipher, hostname, and certificate)
print("=== Cipher used: {}".format(ssock.cipher()))
print("=== Server certificate:")
pprint.pprint(ssock.getpeercert())

... (data transmission code is omitted) ...

# Close the TLS Connection
ssock.shutdown(socket.SHUT_RDWR)
ssock.close()

The TLS program above consists of four major steps. The are depicted in Figure 36.8. We

summarize these steps and provide the TLS client code in the following. More details will be

discussed throughout this section.

1. TLS context setup: This step prepares everything needed in a TLS connection, including

loading the cryptographic algorithms, specifying where the trusted CA certificates are

stored (Line �), deciding on whether to verify peer’s certificate (Line �) and whether to

check the server’s hostname (Line �), etc.

2. TCP connection setup: TLS is mostly built on top of TCP, so the client and the server

need to establish a TCP connection first. The default port for HTTPS server is 443, which

is used in the code.



C
op

yr
ig

ht
©

W
en

lia
ng

D
u

858 CHAPTER 36. TRANSPORT LAYER SECURITY

Data

TLS context setup TLS context setup

TLS Client TLS Server

TCP handshake

TLS handshake

Data transmission

TCP TCP

TLS TLS

Data

Figure 36.8: TLS programming overview

3. TLS handshake: Once the TCP connection is established, the client and server run the

TLS Handshake protocol to establish a TLS session. After a session is established, we

can print out information about the session, including the cipher used, the certificates, etc.

4. Data transmission: At this step, the client and the server can send data to each other using

the established TLS session. We have omitted this part in the code, as we will discuss

them later.

Testing. We can use this client program to communicate with an HTTPS web server in the

real world. We should be able to establish a TLS connection with it. In the follow example, we

have successfully connected to www.example.com.

$ client.py www.example.com
=== Cipher used: (’TLS_AES_256_GCM_SHA384’, ’TLSv1.3’, 256)
=== Server hostname: www.example.com
=== Server certificate:
{’OCSP’: (’http://ocsp.digicert.com’,),

...

36.5.2 The Trusted Certificates
In order for a TLS client to verify the server’s certificate, the client needs to know where to find

the trusted CA certificates. In Line � of the TLS client program, we have specified the location

as /etc/ssl/certs, which stores the CA certificates trusted by the operating system. In

this folder, we will find many certificate files (pem files).

TLS does not use the file name to find the needed certificates, because file name is not

part of a certificate. Instead TLS uses the subject’s hash value. When TLS tries to verify a

server certificate, it gets the issuer’s subject information from the certificate, generates a hash

value from the information, and then uses this hash to find the issuer’s certificate in the trusted

certificate folder.

Therefore, for each certificate file, there is typically a symbolic link connecting a certificate

subject’s hash to the actual certificate. We can use openssl to generate the hash value. The
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following example shows the symbolic link for the GlobalSign Root CA.pem certificate

and how the subject hash can be generated from a certificate.

lrwxrwxrwx 1 root root ... 5ad8a5d6.0 -> GlobalSign_Root_CA.pem
lrwxrwxrwx 1 root root ... GlobalSign_Root_CA.pem

$ openssl x509 -in GlobalSign_Root_CA.pem -noout -subject_hash
5ad8a5d6

Using a different certificate folder. If we want to use a customized folder, instead of the one

provided by the system, we can specify a different folder in the code, such as "./cert", and

then put the trusted certificate in this folder. For example, if we want to test our client program

on https://www.google.com, we need to know what trusted CA certificates can be used

to verify the certificates from Google. We can use openssl’s built-in HTTPS client to get the

information:

$ openssl s_client -connect www.google.com:443
...
Certificate chain
0 s:C = US, ST = California, ... O = Google LLC, CN = www.google.com
i:C = US, O = Google Trust Services, CN = GTS CA 1O1

1 s:C = US, O = Google Trust Services, CN = GTS CA 1O1
i:OU = GlobalSign Root CA - R2, O = GlobalSign, CN = GlobalSign

The above result shows that Google’s certificate is issued by "Google Trust Services",

but this is only an intermediate CA, whose own certificate is issued by a root CA called

"GlobalSign Root CA - R2". We need to get this root CA’s self-signed certificate in

order to verify Google’s certificate. This is a well-known root CA, and it is already in the

/etc/ssl/certs folder. We can copy the pem file into our folder, and create a symbolic

link from the subject’s hash.

$ ls -l /etc/ssl/certs | grep GlobalSign_Root_CA_-_R2.pem
lrwxrwxrwx 1 root root ... 4a6481c9.0 -> GlobalSign_Root_CA_-_R2.pem
lrwxrwxrwx 1 root root ... GlobalSign_Root_CA_-_R2.pem

// Inside the ./certs folder
$ cp /etc/ssl/certs/GlobalSign_Root_CA_-_R2.pem .
$ ln -s GlobalSign_Root_CA_-_R2.pem 4a6481c9.0

This certificate is also preloaded by most browsers, so we can can export it from a browser.

The following instructions show how to get a CA certificate from Firefox.

1. Type about:preferences in the URL field, and we will enter the setting page.

2. Select Privacy & Security, and scroll down to the bottom. Click the "View
Certificates" button; a pop-up window titled "Certificate Manager" will

show up.

3. Select the Authorities Tab, and we can see a list of certificates trusted by Firefox.

Select the one that we need, and then click the Export button to save the selected

certificate in a file inside the "./cert" folder.
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36.5.3 Application Data Transmission

Once the TLS Handshake protocol has succeeded, a TLS session will be established between

the client and the server. We can consider this session as consisting of two uni-directional pipes,

one from the client to the server, and the other from the server to the client. For each pipe, the

sender side can use ssock.sendall() to write its data to the pipe, while the receiver side

can use ssock.recv() to read data from the pipe. Data going through the pipe are protected

by the underlying TLS protocol.

Since we will test our client program with a real-world web server, we will send an HTTP

request to the web server. In the following code, we construct a simple HTTP GET request,

and then send the request to the server. We then use ssock.recv() to keep reading the

data returned from the server. By default, ssock.recv() will block if no data is currently

available, until data become available or the session is closed.

# Send HTTP Request to Server
request = b"GET / HTTP/1.0\r\nHost: " + \

hostname.encode(’utf-8’) + b"\r\n\r\n"
ssock.sendall(request)

# Read HTTP Response from Server
response = ssock.recv(2048)
while response:

pprint.pprint(response.split(b"\r\n"))
response = ssock.recv(2048)

After adding the code above to our TLS client program, we should be able to get the response

from an HTTPS web server.

36.6 Verifying Server’s Hostname

Not checking server’s hostname is a very common security flaw in programs that are based on

TLS [Georgiev et al., 2012]. In this section, we use experiments to demonstrate why failing to

do so can cause security problems. We slightly modify our client program (from Listing 36.1)

by changing the following line from True to False. By doing this, we ask the client program

not to check the server’s hostname.

context.check_hostname = False

36.6.1 An Experiment: Man-In-The-Middle Attack

With the modified client program, we can conduct an experiment to see why it is important to

check the hostname. Without checking whether the server’s hostname matches with the subject

information in its certificate, the client program will be susceptible to Man-In-The-Middle

(MITM) attacks. In our experiment, we emulate such an attack on a victim who wants to visit

www.facebook.com. We use www.example.org as the malicious server, which tries to

steal the victim’s Facebook credentials via an MITM attack. Before launching the attack, we

use our client program to interact with these two servers to confirm that we are able to establish

TLS sessions with them.
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$ client.py www.facebook.com
=== Cipher used: (’TLS_CHACHA20_POLY1305_SHA256’, ’TLSv1.3’, 256)
=== Server certificate:
...
’subject’: ...

((’commonName’, ’*.facebook.com’),)),

$ client.py www.example.org
=== Cipher used: (’TLS_AES_256_GCM_SHA384’, ’TLSv1.3’, 256)
=== Server certificate:
...
’subject’: ...

((’commonName’, ’www.example.org’),)),

The first step for the MITM attack is to get a victim to come to www.example.org
every time they visit Facebook. A typical way to achieve that is to use DNS cache poisoning

attack. Using this attack, attackers can poison the victim’s DNS cache, so when the victim’s

machine tries to find out the IP address of www.facebook.com, it gets the IP address of

www.example.org. Therefore, the victim thinks that he/she is visiting www.facebook.
com, but in reality, he/she is visiting www.example.org.

We will not launch a real DNS cache poisoning attack; instead, we manually add an

entry to the /etc/hosts file, so the hostname www.facebook.com is always resolved to

93.184.216.34, which is the IP address of www.example.org (it should be noted that

this IP address is what we obtained during the writing of this book, and it may change; to repeat

this experiment, readers should use the dig command to get the IP address). The following

entry is added to /etc/hosts.

93.184.216.34 www.facebook.com

We basically tell our computer that 93.184.216.34 is the (spoofed) IP address of

www.facebook.com. Now we visit Facebook using our modified client program, and we get

the following result:

$ client.py www.facebook.com �The hostname
=== Cipher used: (’TLS_AES_256_GCM_SHA384’, ’TLSv1.3’, 256)
=== Server certificate:
...
’subject’: ...

((’commonName’, ’www.example.org’),)),
�Not matching with the hostname!

The result shows that our TLS connection was successful, and our client was able to connect

to www.example.org’s HTTPS sever, even though what we really want to connect to is

www.facebook.com. The printout also shows that the certificate’s commonName field is

www.example.org, not Facebook. Clearly, the TLS connection is made with the attacker’s

server, not the Facebook server.

Now imagine that www.example.org is evil: it returns a login page that looks exactly

like Facebook’s login page. Since the URL is going to display www.facebook.com, there is

no easy way for victims to know that the login page is fake. If they type in their credentials,

their security will be compromised.

The above experiment shows that the MITM attack is successful. This is counter-intuitive,



C
op

yr
ig

ht
©

W
en

lia
ng

D
u

862 CHAPTER 36. TRANSPORT LAYER SECURITY

Listing 36.2: Firefox’s Warning message after failing to verify the server’s identity

Did Not Connect: Potential Security Issue

Firefox detected a potential security threat and did not continue to
www.facebook.com because this website requires a secure connection.

...

Websites prove their identity via certificates. Firefox does not
trust this site because it uses a certificate that is not valid
for www.facebook.com. The certificate is only valid for the following
names: www.example.org, example.com, example.edu, example.net,
example.org, www.example.com, www.example.edu, www.example.net

Error code: SSL_ERROR_BAD_CERT_DOMAIN

because the public key Infrastructure and TLS protocol are designed to defeat such type of

attack. What is wrong here? Before answering the question, let us use a real client program,

such as Firefox browser, to visit Facebook (the fake IP is still in effect). Listing 36.2 shows the

warning message from Firefox (other browsers have different but similar warnings).

Clearly, browsers can detect our MITM attack by warning the users that the so-called

Facebook site does not provide a certificate valid for www.facebook.com. The certificate is

valid though, but it is only valid for a list of related names, and Facebook is not on that list.

36.6.2 Hostname Checking

The reason why browsers can detect our MITM attack is that browsers conduct an extra check

to ensure that the subject name on the certificate from a server matches with the user’s intention,

which is the hostname displayed in a browser’s URL field. The TLS library does not know what

the user’s intention is. It is the application’s responsibility to conduct the checking. That is

exactly what was missing from our code, and it is also what is missing from many TLS-based

applications.

Before OpenSSL 1.0.2, applications need to conduct the hostname checking manually.

Namely, they need to extract the common name entry from the subject field of the server’s

certificate, compare it with the hostname provided by the user, and check whether these two

names match or not. Some certificates may contain a list of alternative names stored in their

extension field. For example, from the Firefox warning message shown above, the certificate

from www.example.org is actually valid for several names, in addition to www.example.
org that is specified in the common name field, including example.com, www.example.
com, example.edu, etc. Therefore, conducting the hostname checking is quite complicated

and tedious.

Since 1.0.2, OpenSSL automates the aforementioned hostname checking, if an application

tells it to do so and also tells it what hostname should be checked against. Keep in mind that TLS

does not know what hostname is the user’s intention, so it must be told by the application. In our

Python code shown in Listing 36.1, the following two lines tell TLS to conduct the hostname

checking: the first line indicates that the checking is required, and the second line provides the
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expected hostname to TLS.

context.check_hostname = True
...
ssock = context.wrap_socket(sock, server hostname = hostname, ...)

In our experiment, we set the hostname checking to False. Now, let’s change it back

to True and connect to Facebook again. This time, we get the error message and the TLS

connection failed. That defeats the MITM attack.

ssl.SSLCertVerificationError: [SSL: CERTIFICATE_VERIFY_FAILED]
certificate verify failed: Hostname mismatch,
certificate is not valid for ’www.facebook.com’. (_ssl.c:1123)

36.7 TLS Server Program in Python

In this section, we write a simple TLS server. Instead of writing one that only works with our

client program, we want to make the server more interesting: we implement a very simple

HTTPS server, which can be tested using browsers. The objective of our server is that upon

receiving anything from a client, the server returns a simple web page. HTTPS itself is not a

new protocol; it is the HTTP protocol running on top of the TLS protocol. Therefore, an HTTPS

server consists of two steps: (1) establishing a TLS connection with the client, and (2) receiving

HTTP requests and sending HTTP responses via the established TLS connection.

#!/usr/bin/python3

import socket, ssl, pprint

html = """
HTTP/1.1 200 OK\r\nContent-Type: text/html\r\n\r\n
<!DOCTYPE html><html><body><h1>This is Bank32.com!</h1></body></html>
"""

SERVER_CERT = ’./server-certs/mycert_cert.pem’
SERVER_PRIVATE = ’./server-certs/mycert_key.pem’

# Set up the TLS context
context = ssl.SSLContext(ssl.PROTOCOL_TLS_SERVER) �

context.load_cert_chain(SERVER_CERT, SERVER_PRIVATE) �

# Set up the TCP server
sock = socket.socket(socket.AF_INET, socket.SOCK_STREAM, 0)
sock.bind((’0.0.0.0’, 443))
sock.listen(5)

while True:
newsock, fromaddr = sock.accept() �

try :
# Bind the TLS layer to the TCP connection
ssock = context.wrap_socket(newsock, server_side=True) �
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print("TLS connection established")

data = ssock.recv(1024)
pprint.pprint("Request: {}".format(data))
ssock.sendall(html.encode(’utf-8’))

ssock.shutdown(socket.SHUT_RDWR)
ssock.close()

except Exception:
print("TLS connection fails")
continue

• Creating context. The program first creates an SSL context, specifying that this is a TLS

server (Line �), which by default, will not ask the client for certificates. This is a typical

behavior of server, because clients are usually operated by end users, most of which do

not have a certificate. For the TLS protocol to work, only one side needs to send its public

key; that is the job of the server.

• Loading private key and certificates. In Line �, the server loads the private key and the

corresponding certificates. Recall that in the TLS protocol, the client will send a secret to

the server, encrypted using the server’s pubic key. To get the secret, the server needs to

use the corresponding private key. If the private key is password protected, users running

the server program will be asked to provide the password.

In most cases, a server’s certificate is signed by an intermediate CA, the certificate of

which may be signed by another intermediate CA. It is the server’s obligation to provide

all the certificates on this certificate chain (not including the last one, which is the root

CA certificate). The server needs to save these required certificates in a single file, which

must be in the PEM format. The certificates must be sorted following the order in the

certificate chain, starting with the server’s certificate.

• Setting up TCP Server. As we have mentioned before, a typical TLS program runs on top

of TCP, so before we run the TLS protocol, a TCP connection needs to be established

first. This TLS server needs to set up the TCP server. The part is quite standard for socket

programming. It creates a TCP socket, binds it to a TCP port (443), and marks the socket

as a passive socket (via the listen() call), which means that the socket will be used to

accept incoming connection requests.

• Binding TLS to the TCP connection. Once the TCP is set up, the server program en-

ters the waiting state via the accept() system call, waiting for incoming connection

requests (Line �). By default, accept() will block. When a TCP connection re-

quest comes from a client, TCP will finish the three-way handshake protocol with the

client. Once the connection is established, TCP unblocks accept(), which returns a

new socket to the server program. This new socket will be given to the TLS layer via

context.wrap socket(), and the TLS layer will then wait for the client to initiate

the TLS handshake protocol (Line �).

• Sending data. Once a TLS connection is established, there is no difference between the

client and the server, as both ends can send data to and receive data from the other end.

The logic for sending and receiving data are the same as that in the client program. In our



C
op

yr
ig

ht
©

W
en

lia
ng

D
u

36.8. TLS PROXY 865

server program, we simply send an HTTP reply message back to the client over the TLS

connection.

Running the server. Before running the server, we need to create a public-key certificate

for this server. In our experiment, the name of our HTTPS server is www.bank32.com, so

we need to get a certificate for this name. We have already covered how to create public-key

certificates in Chapter 35, so we will not repeat it.

We create our own root CA certificate, and use it to sign the certificate for Bank32. If we

test this server using a browser, we need to import this root CA certificate into the browser (see

the PKI chapter for details). If we test this server using our own TLS client, we need to tell the

client program where to find this root CA certificate (see § 36.5.2).

We need to map the hostname www.bank32.com to the server’s IP address. Once every-

thing is done, we can start our server (we need to use the superuser privilege because the server

listens to port 443, which is a privileged port).

// On the server side:
$ sudo ./tls_server.py
Enter PEM pass phrase:
TLS connection established
"Request: b’GET / HTTP/1.0\\r\\nHost: www.bank32.com\\r\\n\\r\\n’"

// On the client side: use our own tls_client.py program
$ tls_client.py www.bank32.com
=== Cipher used: (’TLS_AES_256_GCM_SHA384’, ’TLSv1.3’, 256)
=== Server certificate:
{’issuer’: (((’commonName’, ’www.modelCA.com’),),
...

’subject’: (((’commonName’, ’www.bank32.com’),),),
’version’: 3}

[b’\nHTTP/1.1 200 OK’,
b’Content-Type: text/html’,
b’’,
b’\n<!DOCTYPE html><html><body><h1>This is Bank32.com!</h1>

</body></html>\n’]
-----------------------------------
[b’’]
-----------------------------------

36.8 TLS Proxy
TLS can effectively defeat the eavesdropping and Man-In-The-Middle (MITM) attack. That is

good for users, but it creates challenges to the organizations that need to inspect the outgoing

traffic to prevent important data from being leaked out, such as business secrets, customer data,

etc. For non-TLS traffic, such as web traffic (non-web traffic is usually stopped by firewalls),

these organizations direct all the HTTP requests to an HTTP proxy, which can inspect and filter

the data in the requests, before forwarding them to the intended destination. This is exactly the

Man-In-The-Middle “attack”, except that in this scenario, it is set up by the organization for the

protection purpose, not an attack.
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The main purposes of TLS is exactly to prevent the MITM attack. With most websites

switching to HTTPS, can these organizations still use web proxies to inspect the outgoing web

traffic? This seems to contradict to what TLS can do, but it is possible. In this section, we will

explain how such type of proxy works. Moreover, we will show how to implement a simple

HTTPS proxy.

36.8.1 The Idea of TLS Proxy

We should keep in mind that TLS depends on the public-key infrastructure (PKI). If any essential

element of PKI is compromised, the protection of TLS against MITM will be gone. One essential

element of PKI is the trusted CA certificate installed on the user machines. If one of them gets

compromised (e.g., its private key is stolen by the attack), the attacker can successfully launch

the MITM attack. As we have discussed in Chapter 35, these attacks have happened before.

Organizations who want to establish an HTTPS proxy (basically a MITM “attack”) can

use the same idea: they “compromise” one of the trust CA certificates installed on their users’

machines. Obviously, they will not actually compromise any CA; instead, they will install their

own certificates on users’ machines as trust CA certificates. This is equivalent to what is done in

the successful MITM attacks. In this scenario, the machines belong to the organization, so the

organization has the power to install trust CA certificates.

Forward

Forward

HTTP Request

HTTP Response

Browser (Client)

HTTPS Server

HTTPS Proxy

TLS connection  A
(fake certificate)

TLS connection B
(real certificate)

Proxy’s CA certificate 
installed

Figure 36.9: How the HTTPS proxy works

Once the proxy’s CA certificate T is trusted by the client, the proxy can now use T to generate

fake certificates for any HTTPS server, and can therefore pretend to be any HTTPS server. For

example, if the proxy wants to become a proxy between the client and www.example.com,

the proxy just needs to generate a fake certificate for this server, and sign it using T. During the

TLS handshake with the client (see TLS connection A in Figure 36.9), this fake certificate will be

sent to the client, who will use the trusted certificate T to verify the server certificate. Obviously,

the verification will succeed. Moreover, since the common name field in the fake certificate is

www.example.com, the hostname check on the client will also succeed. Therefore, the client

is fooled to believe that the proxy is indeed www.example.com.

After the client and the proxy have established the TLS connection, the proxy will establish

the second TLS connection, and this time, with the real HTTPS server (see the TLS connection

B in Figure 36.9). The proxy then forward the request from the client to the real server, and

forward the server’s response back to the client.
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36.8.2 Certificate Setup
We first create a CA certificate for the proxy. How to create CA certificate is already covered in

the PKI chapter of this book, so we will not repeat it. We assume that the CA’s public-key certifi-

cate is stored in modelCA cert.pem, while its private key is stored in modelCA key.pem.

We also need to load the CA certificate into our browser as a trusted CA certificate.

We will now use the CA certificate to generate fake server certificates. A real-world HTTPS

proxy generate the fake certificate automatically on the fly. For the sake of simplicity, we will do

it manually. Assuming that we would like to implement a proxy for the www.example.com
server, we need to create a fake certificate for this server. We wrote the following Shell script to

generate a fake certificate:

#!/bin/bash

mySubject="/CN=www.example.com"

# Generate RSA key pair and certificate request
openssl req -newkey rsa:2048 -batch -sha256 \

-keyout proxy_key.pem -out proxy.csr \
-subj "$mySubject" -nodes

# Generate certificate using the CA’s certificate
openssl ca -policy policy_anything -md sha256 -days 3650 \

-in proxy.csr -out proxy_cert.pem -batch \
-cert modelCA_cert.pem -keyfile modelCA_key.pem \
-passin pass:dees

After running the shell script above, we will get a fake certificate (proxy cert.pem)

with the common name being www.example.com. The corresponding private key is stored

in proxy key.pem. When the proxy establishes a TLS connection with the client, it will use

this fake certificate and its private key.

36.8.3 The code for a Simple HTTPS Proxy
The proxy is actually a combination of the TLS client and server programs. To the browser, the

TLS proxy is just a server program, which takes the HTTP requests from the browser (the client),

and return HTTP responses to it. The proxy does not generate any HTTP responses; instead, it

forwards the HTTP requests to the actual web server, and then get the HTTP responses from

the web server. To the actual web server, the TLS proxy is just a client program. After getting

the response, the proxy forwards the response to the browser, the real client. Therefore, by

integrating the client and server programs implemented previously, we should be able to get a

basic proxy working.

Because implementing an HTTPS proxy is a part of the task in a SEED lab, I will not

provide the complete proxy code in the book. Instead, I will provide the skeleton code and

guidelines on how to implement such a proxy.

The main() function. In the main function, we will set up the TLS server (using the fake

certificate), and then we wait for the connection from the client. A browser may simultaneously

send multiple HTTP requests to the server, each using a separate TCP connection. It is better to

deal with each TCP connection in a separate thread, so the proxy program can handle multiple
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simultaneous requests. The skeleton of the main function is listed below. It shows how to create

a thread to handle each TLS connection.

PROXY_CERT = ’./server-certs/proxy_cert.pem’
PROXY_PRIVATE = ’./server-certs/proxy_key.pem’

def main():
# Set up TCP server
sock_listen = socket.socket(socket.AF_INET, socket.SOCK_STREAM, 0)
sock_listen.bind((’0.0.0.0’, 443))
sock_listen.listen(5)

# Initialize TLS server context
context_srv = ssl.SSLContext(ssl.PROTOCOL_TLS_SERVER)
context_srv.load_cert_chain(PROXY_CERT, PROXY_PRIVATE)

while True:
newsock, fromaddr = sock_listen.accept()
ssock = context.wrap_socket(newsock, server_side=True)

x = threading.Thread(target=process_request, args=(ssock,))
x.start()

if __name__ == "__main__":
main()

Processing request. The thread will execute the code in the process request function,

which forwards the HTTP request from the browser to the server, and then forward the HTTP

response from the server to the browser. A code skeleton is provided in the following:

def process_request(client_ssock):

# Create a TLS connection with the server (code omitted)
# The connection is stored in the server_ssock variable

request = client_ssock.recv(2048) # Get request from client
if request:
server_ssock.sendall(request) # Forward request to server

response = server_ssock.recv(2048) # Get response from server
while response:

client_ssock.sendall(response) # Forward to client
response = server_ssock.recv(2048) # Get more response

# Close the TLS connection with the client
client_ssock.shutdown(socket.SHUT_RDWR)
client_ssock.close()

Modifying data. Since the HTTPS proxy can intercept the data between the client and the

server, it can also make changes to the data. For example, if we use this proxy to intercept the
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traffic between a browser and the Google search website, we can add the following line to the

code after we get the request from the client. It will change the word cybersecurity in the

query with "SEED Labs" (the space needs to be encoded using +).

request = request.replace("cybersecurity", "SEED+Labs")

With this change, every time you search for cybersecurity, the actual query sent to

Google is "SEED Labs". You will see that from the browser. We can apply the same method

to modify the response from the server, but it should be noted that the responses data could be

encoded or compressed, so the simple string replacement may not work.

36.9 Summary
Transport Layer Security provides a secure channel for applications to transmit data. To use

TLS, an application first invokes the TLS Handshake protocol to establish a secure channel

with its peer, and then sends data using this channel. The encryption, decryption, and tamper

detection are handled by TLS, transparent to applications, making it quite simple to develop

applications that can communicate securely. Applications using TLS can communicate with one

another, because they “speak” the same protocol. To demonstrate that, we wrote a simple TLS

client that can talk to real-world HTTPS web servers. We also wrote a simple TLS server that

can communicate with HTTPS-speaking browsers.

The chapter explains how TLS works under the hood, so readers can gain insights about

TLS, which help them understand what is done by TLS and what is not done by TLS. A common

mistake in TLS programming is failing to check the server’s identity, so a client may be using

TLS to “securely” communicate with an attacker, instead of with its intended server. The reason

for this mistake is that many developers think that TLS automatically checks that. After reading

this chapter, readers should now know that TLS does not actually do that; nor is TLS able to do

that, because TLS does not know what the intended server is, unless the application tells TLS

about that.

� Hands-on Lab Exercise
We have developed a SEED lab for this chapter. The lab is called Transport Layer Security
(TLS) Lab. Another lab, the VPN Lab, also depends on the content of this chapter. Both labs are

hosted on the SEED website: https://seedsecuritylabs.org.

� Problems and Resources
The homework problems, slides, and source code for this chapter can be downloaded from the

book’s website: https://www.handsonsecurity.net/.
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