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30.1 Introduction

Border Gateway Protocol (BGP) is the standard exterior gateway protocol designed to exchange

routing and reachability information among autonomous systems (AS) on the Internet. It

is the “glue” of the Internet, a critical piece of the Internet infrastructure, and essential for

understanding how the Internet works. Due to its importance, BGP is a primary attack target. If

attackers can compromise BGP, they can disconnect the Internet and redirect traffic. This chapter

focuses on explaining how the BGP protocol works in practice, and how it can be attacked.

Every year before teaching BGP in my class, I would run traceroute from my home, just to

see how my packets travel to different locations. I was amazed by what I saw. For many years,

my packets to the Syracuse University had to go to Philadelphia, and then came back. I live

only 10 miles away from the university. This changed a few years ago. Now my packets to the

university no longer take such a huge detour.

There are many other surprises. For example, when I traceroute to two different organiza-

tions, and I know they are physically located near each other, but the route taken by my packets

are very different. Some companies are quite far from where I live, but from the traceroute, it

seems that they are just nearby.

Looking at the Internet from the sky To understand the reasons behind these interesting

observations, we need to understand how the Internet is formed. Let us look at the Internet from

the sky. At a high altitude, we will see that the Internet consists of many networks connected by

routers. Packets go from one network to another via the routers, until they reach the destination.

Let us descend a little bit, and look at the Internet from a lower altitude. We start to see that

these networks are not completely independent. Some networks belong to the same organization.

Packets actually stays inside one organization as long as they can, but eventually get switched

to another organization. The transition typically happens at a data center or a facility called

Internet exchange.

Our journey inside a packet. Finally, we have descended to the ground. Let us hop on a

magic school bus (i.e., a packet), sit inside its payload area, buckle up the seat belt, and start our

journey towards another university. This time, we will travel far, to the university where I did

my undergraduate studies, the University of Science and Technology of China (USTC). Our

journal starts from Syracuse, New York.

In the first leg of our journal, we stayed inside the networks belonging to Spectrum.com,

rr.com, and charter.com, which all belong to one single company, Charter Communica-

tions. From the names of the routers, we can sort of guess where they are. For example, fyvl
is Fayetteville (the town where I live), esyr is East Syracuse, roch is Rochester, and chi is

Chicago. We are traveling west.

$ mtr -zb www.ustc.edu.cn
Host
1. --- _gateway (10.0.5.1)
2. --- 192.168.0.1 (192.168.0.1)
3. AS11351 142-254-213-109.inf.spectrum.com (142.254.213.109)
4. AS11351 agg61.fyvlnyhe02h.northeast.rr.com (24.58.240.229)
5. AS11351 agg78.esyrnyaw02r.northeast.rr.com (24.58.52.86)
6. AS11351 agg27.rcr01rochnyei.netops.charter.com (24.58.32.76)
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7. AS7843 bu-ether13.tustca4200w-bcr00.tbone.rr.com (66.109.6.2)
8. AS7843 0.ae0.pr0.chi10.tbone.rr.com (66.109.6.153)

At Chicago, we say goodbye to Charter, and hop on alter.net, which belongs to Verizon,

a national backbone in the US. Through this national “highway”, very quickly, we arrive at Los

Angeles. That is where we get switched from Verizon to China Unicom, a national backbone in

China.

9. AS701 te-0-1-0-1.gw6.chi13.alter.net (152.179.92.69)
10. ... no information is available for this router ...
11. AS701 chinaunicom-gw.customer.alter.net (157.130.230.58)

We find ourselves inside a fiber cable laid underneath the Pacific Ocean. Even though

we have plenty of light inside the cable, we cannot see anything outside, because our fiber is

wrapped with many protection layers, so it is not easy to break. Because of these layers, even if

a shark bits the cable, even though that is quite rare, we will still be safe inside. While traveling

inside the cable, our light gets weaker and weaker, but every 50 miles, we get a boost, so when

we reach the other end of the fiber, our signal is still strong enough. There is also a wire in the

layer, and it is used to transmit the electricity to power these boosters.

Finally, we arrive at a landing point, where we get switched into land lines, and the next

thing we know, we are in Beijing. Continuing our journey inside China Unicom’s networks,

eventually, we arrive at Hefei, Anhui, where USTC is located. The entire journey takes 120

milliseconds, with two third of time spent on crossing the Pacific Ocean.

12. AS4837 219.158.96.233 Beijing
13. AS4837 219.158.98.93 Beijing
14. AS4837 219.158.8.113 Beijing
15. AS4837 219.158.8.166 Beijing
16. AS4837 219.158.115.34 Beijing
17. AS140726 58.242.195.162 Hefei, Anhui
18. AS140726 58.242.32.130 Hefei, Anhui
19. AS4837 218.104.71.168 Hefei, Anhui (USTC, the destination)

The outline of this chapter and the Internet emulator. Throughout the entire journey, we

never got lost. At each stop, the router always know where to direct us. How do they know the

directions? The BGP protocol plays an essential role in this process. The focus of this chapter is

on how BGP works and how it can be attacked. Due to its complexity, we will first discuss the

physical infrastructure of the Internet and provide an overview of the BGP protocol. Then we

will dive into low-level details of the protocol, showing how exactly BGP works in practice.

To help students gain hands-on experiences on BGP, we spent three years building an

Internet emulator, which allows us to run a min-Internet inside a single computer. Because

of this emulator, we are not only able to explain the theories behind BGP, but also able to

demonstrate how BGP works in action. Integrating the theory and practice is important for

understanding BGP, which is very complicated, probably the most complicated topic discussed

in this book.
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30.2 Physical Infrastructure

In this section, we will look at the physical infrastructure of the Internet, and see the essential

physical components of the Internet.

30.2.1 Autonomous Systems

The Internet is formed by many networks, which are organized into autonomous systems (AS).

An autonomous system is a collection of connected Internet Protocol (IP) routing prefixes under

the control of one or more network operators on behalf of a single administrative entity or

domain [Hawkinson and Bates, 1996]. Each AS is assigned an autonomous system number

(ASN). The original ASN numbers only use 16 bits, but that is not enough, so RFC 6793

extended ASN numbers to 32 bits. There are two major types of ASes.

• Stub AS: This type of AS does not provide transit services to others. They are end

customers, such as universities, organizations, and most companies. Some stub ASes only

connect to one other AS (typically an upstream provider). They are called single-homed

stub ASes. Some stub ASes connect to multiple ASes, and they are called multi-homed

stub ASes. A multi-home stub AS will not allow traffic from one AS to pass through to

another AS, i.e., it does not provide transit service.

• Transit AS: This type of AS connects to multiple ASes, and offer to route data from one

AS to another AS. It provides transit services.

30.2.2 Internet Exchange and Peering

An autonomous system needs to connect to other autonomous systems, so they can exchange

network traffic. Without the connection, an AS will be an isolated system. Through the

connections, users from one autonomous system can reach the users in another AS. Connecting

two autonomous systems is called peering.

There are two types of peering, public peering and private peering. Public peering usually

occurs inside a public facility called Internet Exchange Points (IX). An IX is basically a big

high-throughput switch that connects the routers from different ASes (see Figure 30.1(A)).

Through this switch, packets from one AS can be handed over to another AS.

Another type of peering is private peering. When two ASes peer privately, their routers are

directly connected via a dedicated cable (fiber or copper), instead of through a switch. This is

called cross connect. A cross-connection can be viewed as a direct point-to-point connection

between two routers. Although private peering can be done inside an IX, most private peering

occur at colocation center, which is a special type of data center.

To peer with others at a data center (IX or colocation), an AS needs to put their devices

inside the data center. This is called PoP (Point of Presence). A PoP usually includes routers,

servers, and switches.

In addition to exchanging network traffics, routers involved in peering also participate in

a routing protocol called BGP (Border Gateway Protocol). The goal of BGP is to exchange

destination information, so each autonomous system knows how to route packets to external

networks. Understanding how the BGP protocol works and how it can be attacked is the main

focus of this chapter.
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Figure 30.1: Public and private peering

30.2.3 Laying Cable

An autonomous system’s BGP routers at each PoP must connect to its networks, so the inbound

traffic received at the PoP location can come into the AS while the outbound traffic can be

routed out from the PoP. Typically, PoPs and the networks of an AS are at different physical

locations, so cables must be laid to connect them. An autonomous system can lay its own cables,

but doing this is quite expensive, especially for small ASes. There are companies who invest in

the cable business, and they lay the cable. Most individual ASes lease the cable from them, or a

channel inside a shared cable.

Sometimes, cables are long distance, and some of them have to be laid at the bottom of an

ocean, such as the Pacific Ocean and the Atlantic Ocean. These are called submarine cables.

While traditionally, submarine cables were owned by telecom carriers, but recently, more and

more content providers are investing in the cable business. For example, Google, Facebook,

Microsoft, and Amazon are major investors in new submarine cables. Faced with the prospect

of ongoing massive bandwidth growth, owning new submarine cables makes sense for these

companies.

For example, Google has many PoPs in Europe to peer with other autonomous systems. This

way the traffic to Google can directly get into Google’s networks from those PoPs, be routed

through Google’s dedicated cable underneath the Atlantic ocean, and get into its cloud data

centers in the US, instead of going through other transit ASes. This will reduce the delay and

increase the bandwidth. It is important for the cloud business. That’s why it is not surprising

that all the major cloud providers are investing heavily in submarine cables.

30.2.4 Case Studies

In this case studies, we look at three different types of autonomous systems.

A national backbone (a transit AS). To provide transit services to other ASes, a transit AS

need to have PoPs at various locations. Through these PoPs, the transit AS connects with other

ASes. A large transit AS has PoPs in many different locations. It lays cables to connect these

PoPs to its networks, so traffic entering from one PoP can be routed within its network, eventually
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reaching another PoP, where the traffic can exit and be given to another AS. Figure 30.2 shows a

conceptual example of such a large transit AS.

To United 
Kingdom

To China

Figure 30.2: A conceptual diagram of a large transit AS

Some of these PoPs are inside big Internet Exchange, and some are in smaller colocation

centers. Through these PoPs and the peering, the AS can provide Internet services to its

customers, as well as exchanging traffic with other ASes. For example, on the east, the transit

AS has a PoP inside the Manhattan Landing Internet Exchange (MAN LAN) in New York City.

From there, it peers with many other ASes. This PoP also connects to another PoP at United

Kingdom, through a submarine fiber optical cable under the Atlantic Ocean, allowing the transit

AS to peer with others in Europe.

On the west, the transit AS connects to a PoP in Hong Kong, China, through submarine fiber

optical cable under the Pacific Ocean. It peers with other transit ASes in Asia, pulling the traffic

from there to the US, and further deliver them to the corresponding PoPs in the backbone.

A state backbone (a transit AS). NYSERNET is an Internet service provider inside the New

York state, and it is mainly for educational purposes, connecting many of the education institutes

inside the state. Figure 30.3 shows its PoP map as of 2021.

As we can see, NYSERNET has PoPs in several data centers across the state, so it can peer

with the ASes (mostly stub ASes) in those regions. For example, at Syracuse, it peers with the

Syracuse University’s autonomous system, as well as with many other schools, museums, and

research institutes in the regions, providing the transit service to them.

At Buffalo and New York City, NYSERNET peers with other transit ASes, so traffic going

out of the New York state can be switched to another AS. One of the peers is the Internet2,

which is a national backbone.

A multi-homed stub AS. If organizations, such as corporations and universities, want to

connect to the Internet, they need to purchase services from the Internet Service Providers (ISPs).

To provide services, these ISPs typically set up PoPs in a colocation center near the customers,

so these organizations can connect to these PoPs.
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Figure 30.3: NYSERNet

Let us use Syracuse University (SU) as an example. SU leased fiber cable to connect its

BGP routers on campus directly to the circuit in the colocation center at the Syracuse downtown,

which is 2 miles away from the campus. At there, SU’s BGP peers with Charter, Cogent, and

NYSERNET, which are the ISPs for SU. These ISPs all have PoPs inside this colocation center.

Many years ago, SU did not peer with RoadRunner, the then Internet service provide for the

residents in my neighborhood. My packets to the campus networks had to travel to Philadelphia,

where they would get out of RoadRunner and enter Cogent, which routed the traffic to the

Syracuse downtown, and handed over the packets to SU’s AS. My house is only 10 miles away

from the campus. RoadRunner was later purchased by Time Warner, and then by Charter, which

does peer with SU at Syracuse. Since then, my packets to the university no longer need to take

a huge detour. Therefore, do not be surprised if your packets to your neighbors have to travel

hundreds of miles, as you may not be using the same ISP, and the closest data center for these

two ISPs to peer is another city.

30.3 The BGP Protocol: Overview

With the cables and peering, the networks from the autonomous systems are interconnected, and

the Internet is formed. However, we still have one problem that needs to be resolved: when

a packet arrives at an router, which direction should the router forward the packet to? Many

routers are connected to more than two networks, so there are multiple directions to route a

packet. How do they know which direction a packet should go? The decision will be based on

the routing information inside each router, but how do routers get the routing information? That

is the purpose of the routing protocols.
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30.3.1 Routing Protocols
Let us use highway as an analogy. To provide directions, the transportation department posts

signs along the highways. If we consider vehicles as packets, these signs are routing information.

In this case, the routing information is established via manual efforts. Roads are quite static,

and they do not change for many years, so manually posting the routing information is practical.

However, the Internet is quite dynamic, and routes can change very frequently. That makes the

manual effort inadequate.

To get the direction information, routers would constantly talk among themselves, so they

can exchange routing information and update one another if routes have changed. This is done

through routing protocols. There are many routers on the Internet, so it is impractical for them

to participate in the same protocol. There are two levels of routing protocols.

• IGP: (Interior Gateway Protocols): Inside an autonomous system, the internal routers

talk among themselves, exchanging routing information, so routers know where to route

packets within the AS. These routers only talk to the routers within the same AS, and they

do not talk to the outsiders. Examples of IGP includes OSPF, RIP, and IGRP. How IGP

works is beyond the scope of this chapter.

• EGP (Exterior Gateway Protocols): It is used for determining network reachability

between autonomous systems. When an packet exits an autonomous system, the router

at the exit point (or edge) needs to know which AS the packet should be given to. The

edge routers from different ASes participate in this protocol to exchange the network

reachability information. There is only one widely-adopted EGP protocol, and that is

BGP, Border Gateway Protocol. This chapter focuses on BGP.

30.3.2 The BGP Protocol: A High-Level Explanation
The actual BGP protocol is quite complicated, so we break it down into several sections. In this

section, we only give a high-level explanation of how the protocol works. In later sections, we

dive into the details of each aspect of BGP.

BGP speakers and routers. Each AS will designate one or multiple devices as its repre-

sentatives, called BGP speakers. They peer with other BGP speakers, so they can exchange

routing information with the peers. Through this protocol, a speaker will know the path to a

particular destination. After getting the external routing information, the speaker disseminate

the information to the routers inside the AS, so the internal routers also know which path they

should take when routing to an external destination.

The role of BGP speakers is to gather routing information and provide the information to

routers, they do not necessarily route packets, so BGP speakers and BGP routers are different

entities. However, in most situations, they are both on the same device. In this case, BGP routers

are often used, instead of BGP speakers. We primarily use BGP routers in this chapter.

BGP peering. For two BGP routers to exchange routing information, they need to peer with

each other. Figure 30.4 shows how the BGP routers A - G peer with one another. A BGP router

can peer with a BGP router from a different AS or from the same AS. If they are from different

ASes, the protocol running between them is called EBGP (External BGP). If they are from the

same AS (e.g., D, E, and F), the protocol is called IBGP (Internal BGP). Using the peering and

the BGP protocol, these BGP routers exchange routing information.
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Figure 30.4: How BGP works

IP prefix announcement. Each AS owns a set of network IP prefixes, and it has to announce

them to the rest of the Internet, telling others that to reach these IP prefixes, come to this

particular AS. Let us use AS150 as an example. Assuming it owns a network with prefix

10.150.0.0/24 (see Figure 30.4). It has to announce this prefix to its peers (BGP routers B

and D); otherwise, nobody knows about it. In the announcement, for each destination, a path

is provided. This path, called AS path, lists all the ASes that need to be traversed to reach the

destination. In the example, the AS path for 10.150.0.0/24 announced by AS150 only

contains 150, the ASN of the origin. In the figure, � and � are what AS150 announces to D

and B, respectively.

Route selection and forwarding. Let us see what happens when Routers B and D receive

the prefix announcement from AS150. We first look at BGP Router B. After receiving A’s

announcement, B now knows a path to the network 10.150.0.0/24. If AS151 does not

provide transit services to AS150, it will not do anything. However, if AS151 does provide

transit services, it will further announce this path to its other peers. In the announcement, B

adds its own ASN to the front of the path, so the AS path sent from B to D is "151 150" (see

� in the figure).

Now, let us look at what Router D in AS11 will do to the prefix 10.150.0.0/24. D

receives two AS paths for this prefix, i.e., there are two different paths to reach this network.

• From Router A in AS-150 (�): the AS path is "150"
• From Router B in AS-151 (�): the AS path is "151 150"

AS11 is a transit AS, providing transit services to AS150, so D will further announce the

prefix to its own peers. D will store both AS paths in its routing table, but will select only one

to announce to its peers as the best route to 10.150.0.0/24. The path selection follows an

algorithm, which will be discussed in details in § 30.8. The length of the AS path is one of the

selection criteria. Assuming that in this case, the length criterion is used, so the shorter AS path
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"150" is selected. Router D will then forward this route to its peers. Here is what D will do to

all its peers:

• Peer B is an EBGP peer, so D will announce the destination 10.150.0.0/24 to it with

an updated AS path "11 150", i.e., adding its own ASN to the front of the AS path (�
in the figure).

• Peers E and F are IBGP peer, so D will announce the destination to them without adding

its own ASN to the AS path (� in the figure). Although E and F do not peer with any

BGP router from AS150, through the IBGP peering with D, they now know a path to

10.150.0.0/24.

• Peer A is from AS150, which is already on the AS path, so D will not forward the selected

path to A. This is to avoid loop.

Routers E and F will further announce the network prefix to their EBGP peers G and C,

respectively. In their announcement, the ASN 11 will be added to the AS path (see � and � in

the figure). It should be noted that E will not forward the network prefix to its IBGP peer F, and

vice versa. BGP routers do not forward the route to their IBGP peers if the route is learned from

an IBGP peer (the explanation on this is provided in § 30.10.1).

We have only explained how the IP prefix 10.150.0.0/24 in AS150 is propagated on

the Internet. Network prefixes belonging to other ASes are propagated in a similar fashion.

The explanation here is at a high level, and many details of the process are not shown. In the

subsequent sections, we will dive into those details.

Path withdrawal. If for some reason, the link between A and D is broken, D can no longer

reach 10.150.0.0/24 from that link, i.e., through the AS path "150", so it will send an

update message to all its peers to withdraw that route. Moreover, D will re-run its path selection

algorithm. This time, the best AS path to reach 10.150.0.0/24 is "151 150", which is

the one received from Router B. Therefore, D will announce this new route to its peers.

If the link between A and D is not broken, but the link between B and D is broken, that will

not affect the route selected by D with regarding to the destination network 10.150.0.0/24,

so D will not send any update message regarding this network.

30.4 The SEED Internet Emulator
Due to the complexity of BGP, it is hard to learn BGP simply from readings. It is important for

readers to get a first-hand experience on BGP. I have taught BGP for many years, but could not

find a suitable platform that I could use for students to gain hands-on experience on BGP. This is

mainly because BGP involves many computers and networks in a realistic environment. Building

such an environment is not easy. That is the main reason why we spent three years developing the

SEED Internet Emulator (simply called the Emulator in this chapter). Details of the emulator can

be found from the SEED website: https://seedsecuritylabs.org/emulator/.

30.4.1 The SEED Internet Emulator
The demonstration and experiments described in this chapter are based on a pre-built Internet

emulator, which is provided inside the Labsetup.zip file. The files inside the output
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sub-folder are the actual emulation files (container files), and they are generated from the Python

code mini-internet.py, which is also included. However, to run this program, one needs

to install the Emulator source code from GitHub (https://github.com/seed-labs/
seed-emulator). The advantage of the Python code is that if readers want to modify the

Emulator, such as adding a new autonomous system, a new peering, a new network, etc., they

can easily do that in the Python code. Detailed manuals for the Emulator can be found from the

project’s GiHub repository.

Start the emulation. Go to the Labsetup/output folder, run the following docker com-

mands to build and start the containers. It is better to run the Emulator inside the provided SEED

Ubuntu 20.04 VM, because everything that the Emulator depends on has already been installed.

However, users can also use a generic Ubuntu 20.04 build as long as all the needed software

packages are installed.

$ docker-compose build
$ docker-compose up

The network map. Each computer (hosts or routers) running inside the Emulator is a docker

container. Users can access these computers using docker commands, such as getting a shell

inside a container. The Emulator also comes with a web application, which visualizes all the

hosts, routers, and networks. After the Emulator starts, the map can be accessed from this URL:

http://localhost:8080/map.html. Users can interact with this map, such as getting

a terminal from a container, disabling BGP sessions, and setting filters to visualize network

traffic. The syntax of the filter is the same as that in tcpdump, because the filter is actually

given to the tcpdump program running inside each container.

Running tcpdump. During the experiments, we may need to capture and display packets.

While tcpdump can do these, for displaying packets, it is better to use Wireshark. Unfortu-

nately, it is very hard to run GUI-based applications, such as Wireshark, inside a container.

Therefore, we use a hybrid approach. Inside the container, we use tcpdump to capture packets,

and save them into a pcap file. We run the following command inside the container to cap-

ture BGP packets (port 179 is used for BGP). The captured packets will be stored in the file

/tmp/bgp.pcap.

# tcpdump -i any -w /tmp/bgp.pcap "tcp port 179"

We then copy the file to the host machine, and open it using Wireshark. Copying files

between a container and the host machine can be done using the "docker cp" command on

the host machine.

$ docker cp <container id>:/tmp/bgp.pcap ./bgp.pcap

30.4.2 BIRD: The Routing Software Used in the Emulator
The routing software used in the Emulator is called BIRD, an acronym standing for “BIRD

Internet Routing Daemon” [?]. BIRD is open source under the GNU General Public License. It

supports a number of standard routing protocols, including the Border Gateway Protocol (BGP),
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the Routing Information Protocol (RIP), and the Open Shortest Path First protocol (OSPF). We

mainly use BGP and OSPF in the Emulator. We will configure these routing protocols in BIRD,

so it is important to understand how BIRD configures its routing protocols.

BIRD takes the configuration file bird.conf from the /etc/bird/ folder. The actual

configuration for BIRD is quite complicated, and most configuration entries are protocol specific.

Full details of the configuration can be found in the BIRD manual [?]. We only focus on the

features used by the Emulator.

BIRD’s routing tables. The purpose of most routing protocols is for protocol participants

to exchange information with their peers. The information will be stored in tables, which are

called routing tables. BIRD has several routing tables in memory. How these routing tables

receive or export their data are specified as a protocol. In some cases, these are real routing

protocols, such as BGP, OSPF, and RIP. Namely, the routing table connects to a router, and the

routes received from the router via the specified protocol are imported to the routing table, while

the routes stored in the routing table are exported to the router.

Some protocols used in BIRD are not real protocols. BIRD uses the keyword protocol
in a broader sense, specifying where a BIRD routing table gets its routes from, and where the

routes in the table need to be sent to.

BGP table

Peer

master4

Kernel Routing Table

OSPF table

Peer Peer Peer

Pipe protocol

Kernel protocol

BGP 
protocol

OSPF 
protocol

BGP tab

Peer

master4

Kernel Routing Table

SPF table

Peer

ocol

Kernel protocolK

BGP 
protocolp cool

Figure 30.5: Relationships among the tables in BIRD

These special “protocols” are used to specify how data flow from one routing table to another.

Inside the Emulator, on each BGP router, we save the routes from different protocols in separate

tables. For example, routes obtained from the BGP protocol are stored in the table t bgp, and

the routes from the OSPF protocol are stored in the table t ospf. Using the pipe “protocol”,

we can feed the routes from these tables to BIRD’s master table (master4 for IPv4). The

routes in the master table will eventually get into the kernel routing table, which is the actual

routing table used by the operating system for packet forwarding. Figure 30.5 depicts the

relationships of these tables. We will explain them in further details in the rest of this section.
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30.4.3 Pipe Between Tables

For IPv4, only the route stored in BIRD’s master table master4 will be eventually exported

to the kernel’s routing table (via the kernel protocol). If we do not specify a table name in a

protocol, the default one used will be the master table. However, in our configuration, to make it

easier to manage routes, we do specify a customized table for different protocols. We need to

get these routes into the master table. This is done through a pipe, which is another special type

of protocol in BIRD.

The pipe protocol links two routing tables, a primary table (specified using the table
keyword) and a secondary table (specified using the peer keyword). Filters can be specified

for the import and export directions. In the following example, all the entries in the t bgp table

are exported to the master4 table, while none of the routes in the master4 are imported.

protocol pipe {
table t_bgp;
peer table master4;
import none;
export all;

}

In the following example, all the route entries from the t direct table are exported to the

t bgp table, and the local preference attribute of the routes are set to 40.

protocol pipe {
table t_direct;
peer table t_bgp;
import none;
export filter { bgp_local_pref = 40; accept; };

}

30.4.4 BGP Routing Table vs. Kernel Routing Table

None of the BIRD routing tables is used for the actual routing. The one actually used for routing

is called kernel routing table, which is inside the operating system kernel. However, the kernel

routing table depends on the routing protocols to learn the actual routes.

In BIRD, a special protocol called kernel protocol is used to connect BIRD’s routing

tables to kernel’s routing table (see Figure 30.5). An example is given in the following. In this

example, no table is specified, so the table used is the master table (master4 for IPv4). In

the example, "import all" means BIRD will import everything from the kernel’s routing

table to its master4 table; "export all" means all the routes in the master4 table will

be exported to the kernel’s routing table. This is how BGP routers set the routing table using the

data collected from the BGP protocol and other routing protocols.

protocol kernel {
ipv4 {

import all;
export all;

};
learn;

}
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Experiment. Let’s do an experiment by modifying BIRD’s configuration file /etc/bird/
bird.conf on a BGP router inside the Emulator. We change "export all" to "export
none" in the kernel protocol. This means none of the routes from BIRD will be exported to

the kernel routing table. After making the changes, reload the configuration (the first command),

and then check the kernel routing table (the second command).

# birdc configure
BIRD 2.0.7 ready.
Reading configuration from /etc/bird/bird.conf
Reconfigured

# ip route
10.100.0.0/24 dev ix100 proto kernel scope link src 10.100.0.150
10.150.0.0/24 dev net0 proto kernel scope link src 10.150.0.254

Before the change, the BGP router knows how to reach the other networks in the Emulator,

and the output of "ip route" has many entries. After the change, we can clearly see that the

kernel now knows nothing about the rest of the Emulator. This is because the kernel does not

get any route from BIRD.

30.4.5 The Mandatory device Protocol
Each BGP router has a mandatory protocol called device. This is not a real routing protocol.

It does not generate any route, nor does it accept any route. It is only used to get the information

about the network interfaces from the kernel. Without the device protocol, BIRD knows

nothing about the network interfaces, so it will not be able to run BGP, as it does not know how

to reach peers. Therefore, this protocol is mandatory. It is just an empty block in our Emulator.

protocol device { }

30.5 BGP: IP Prefixes Owned By AS
In the BGP protocol, each BGP router needs to tell the Internet the network prefixes (or IP

prefixes) owned by the autonomous system that it is representing, telling others that this AS

is the origin (owner) of these IP prefixes, and packets to these prefixes should be routed into

this AS. How does a BGP router know what IP prefixes are owned by its AS? There are several

ways for a BGP router to get that information:

• From the networks that the BGP router is attached to.

• From the entries statically added to the configuration file.

• From the IBGP (Interior BGP) and IGP (Internal Gateway Protocol), i.e., from other

routers inside the same AS. These two protocols will be covered in § 30.10.

30.5.1 Route Generation Using the direct Protocol
Each BGP router is attached to one or multiple internal networks within the AS, so it knows the

IP prefixes for these networks from its own network interfaces. BIRD uses a direct protocol

to collect such IP prefix information, and generate the corresponding routes to these prefixes.
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This is not a real protocol, but a route generator for all the directly connected networks. The

following is an example from the BIRD configuration file:

protocol direct local_nets { # Give it a customized name: local_nets
ipv4 {
table t_direct;

# Import all the generated routes to t_direct.
import all;

};

# Generate routes from these two interfaces
interface "eth0";
interface "eth1";

}

In the direct protocol, the interface keyword is used to generate routes from an interface.

Assuming that a BGP router uses eth0 and eth1 to connect to the autonomous system’s

internal networks 10.150.0.0/24 and 10.150.1.0/24, respectively, the direct pro-

tocol block in the example above will generate routing entries for 10.150.0.0/24 and

10.150.1.0/24. These routes will be stored in the t direct table. Later we will see that

through a pipe, the routes in this table are exported to the BGP table t bgp, and are thus used

by the BGP protocol.

Experiments on the direct protocol. In our emulation, AS-150 has one network, so there

is only one interface listed in the direct protocol. We can run the following command on the

BGP router to see the status of this protocol.

# birdc show protocols all local_nets
BIRD 2.0.7 ready.
Name Proto Table State Since Info
local_nets Direct --- up 13:51:05.188
Channel ipv4
State: UP
Table: t_direct
Preference: 240
Input filter: ACCEPT
Output filter: REJECT
Routes: 1 imported, 0 exported, 1 preferred
...

As we will show later, the routes stored in the t direct table will eventually be exported to

the BGP table t bgp, and then be further exported to the BGP’s master routing table master4.

We can use the "birdc show route" command to list the entries in each table (if no table

name is specified in the command, the master4 table will be used by default).

# birdc show route all table t direct 10.150.0.0/24
Table t_direct:
10.150.0.0/24 unicast [local_nets 13:51:05.189] * (240)

dev net0
Type: device univ
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# birdc show route all table t bgp 10.150.0.0/24
Table t_bgp:
10.150.0.0/24 unicast [local_nets 13:51:05.189] * (240)

dev net0
Type: device univ
BGP.local_pref: 40
BGP.large_community: (150, 0, 0)

# birdc show route all table master4 10.150.0.0/24
Table master4:
10.150.0.0/24 unicast [local_nets 13:51:05.189] * (240)

dev net0
Type: device univ
BGP.local_pref: 40
BGP.large_community: (150, 0, 0)

30.5.2 Routes Generated From the static Protocol
We can also add static IP prefix information in the BGP configuration file. In BIRD, this is done

via the static protocol. This is not a real protocol either, as it does not import routes from a

peer. Instead, it provides predefined routes that need to be imported into the routing table.

When specifying a route, we need to specify a target to indicate the action that needs to be

performed. The target can be a router, so the packets to the destination should be forwarded to

this router. There is an interesting target name called blackhole, indicating that the packets

to the destination should be dropped. In addition, each route can have a route-specific filter.

This is especially useful for configuring route attributes. Filters will be discussed in § 30.6.2.

Let us add the following static protocol to AS-150’s BGP router. After making changes

to the configuration file /etc/bird/bird.conf, we need to run "birdc configure"
to reload the configuration. Once the routes are reloaded, the BGP router will announce them

to the outside. If we go to other BGP routers inside the emulator, check their routing tables

using "ip route", we can clearly see that the 10.150.1.0/24 and 10.150.2.0/24
networks are in their routing tables.

protocol static {
ipv4 {

table t_bgp;
};
route 10.150.1.0/24 via 10.150.0.254 {

bgp_large_community.add(LOCAL_COMM);
};
route 10.150.2.0/24 blackhole {

bgp_large_community.add(LOCAL_COMM);
};

}

30.5.3 ASN and Its IP Prefixes
In the real world, sometimes we would like to know what IP prefixes are owned by a particular

AS, and what AS is the owner for a particular IP prefix. These can be done using the RADB
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database. The following command lists all the IP prefixes owned by AS11872, the ASN

belonging to the Syracuse University.

$ whois -h whois.radb.net -- ’-i origin AS11872’ | grep route:
route: 128.230.0.0/16
route: 149.119.0.0/16
route: 128.230.0.0/17
route: 128.230.128.0/17
route: 128.230.0.0/18
route: 128.230.64.0/18
route: 128.230.0.0/19
route: 128.230.32.0/19
route: 149.119.0.0/17
route: 149.119.128.0/17
route: 149.119.0.0/18
route: 149.119.64.0/18

We can also find the owner of a particular IP prefix. The following command shows the

ownership of the IP address 31.13.78.3.

$ whois -h whois.radb.net 31.13.78.3
route: 31.13.78.0/24
descr: Facebook, Inc.
origin: AS32934
mnt-by: MAINT-AS32934
changed: shaw@fb.com 20120423 #20:09:37Z
source: RADB

30.6 BGP Peering
In this section, we show exactly how BGP routers peer with each other. We use the Emulator

to demonstrate how the peering works. In the Emulator, peering is conducted in Internet

eXchanges (IX), each of which is emulated using a local network. An AS that peers with other

ASes at an IX needs to have a PoP inside the IX. This is emulated as having a BGP router

connected to the network provided by the IX.

Figure 30.6 depicts the setup at IX-100, where AS-150, AS-151, AS-2, AS-3, and AS-4 are

connected to the IX-100’s network 10.100.0.0/24. These autonomous systems all have a

BGP router connected to the network, so they are physically connected. That does not mean

they peer with one another. If two BGP routers want to peer with each other, they need to set up

a peering relationship.

30.6.1 Establishing Peering Relationship
After two BGP routers are physically connected, either through a public peer or a private peering,

they need to set up a BGP peering between themselves, so they can talk to each other using

BGP and exchange route information. A BGP router can peer with multiple peers, and each one

is called a peering session. In BIRD, each peering session is defined using a protocol called

bgp. In the Emulator, AS-150 peers with AS-2 at IX-100. The following example shows the

peering configuration on AS-150’s BGP router.
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AS-150 AS-151

AS-2 AS-3 AS-4

10.100.0.150 10.100.0.151

10.100.0.2 10.100.0.3 10.100.0.4

Figure 30.6: The setup of the Internet exchange IX-100

protocol bgp u_as2 {
ipv4 {

table t_bgp;
import filter {

... omitted ...
};
export where ... filter omitted ...
next hop self;

};
local 10.100.0.150 as 150;
neighbor 10.100.0.2 as 2;

}

The local option. It specifies which AS the router belongs to and the IP address of the router.

This IP address should be the one on the IX’s network (IX-100’s network is 10.100.0.0/24
in the Emulator). The IP address part is optional, but it makes the configuration looks clearer

and can prevent selecting the wrong IP address for the BGP session when there are multiple IP

addresses on the router.

The neighbor option. It specifies the IP address of the peer and what AS it belongs to.

This is the actual peering part. In this example, we set up a BGP session between AS-150
and AS-2, so they can exchange route information using the BGP protocol. Similarly, the IP

address here should be the one on the IX’s network.

The IPv4 channel and the routing table. Each protocol is connected to a routing table

through a channel. BGP supports both IPv4 and IPv6 channels. Each channel has two filters,

export and import filters, which can accept, reject and modify the routes. The export filter

applies to the routes going from the routing table to the protocol, while the import filter applies

to the routes coming into the routing table. In the example above, the routing table in the IPv4

channel is specified (t bgp). If no table is specified, the default table used is master4 (for

IPv6, it is master6).
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30.6.2 Import and Export Filters
When importing/exporting routes to/from the routing table, filter rules can be applied. BIRD

contains a simple programming language, so filter rules are programs. The syntax of the

programming language can be found from the BIRD manual [?]. When a route is being passed

between protocols and routing tables, the corresponding filter will be interpreted by BIRD. The

filter will get the route, so it can inspect the route, the attributes, and make changes to the route

if needed. At the end, the filter decides whether to pass the route through (using accept) or

reject it (using reject).

The following example shows the filters used in the peering session between AS-150 and AS-

2 (omitted in the earlier example). In this example, when routes are imported from the peer (i.e.,

from AS-2’s BGP router), a community information is added and the local preference value is

set to 10. When routes are exported to the peer, only the routes belonging to the LOCAL COMM
and CUSTOMER COMM communities can be exported. We will discuss the communities later.

table t_bgp;
import filter {

bgp_large_community.add(PROVIDER_COMM);
bgp_local_pref = 10;
accept;

};
export where bgp_large_community ˜ [LOCAL_COMM, CUSTOMER_COMM];

A filter is passed a route, so it can access the attributes of the route via predefined variables.

We list some of the useful variables in the following, while the detailed list can be found from

the BIRD manual [?].

• net: the network prefix of the route.

• bgp path: the AS path of the route.

• bgp local pref: the local preference value of the route; used for path selection.

• bgp next hop: the next hop used for forwarding packets to this destination.

• bgp large community: list of large community values associated with the route.

30.6.3 Peering via Route Server
In a public Internet exchange, autonomous systems want to peer with many other autonomous

systems. Let’s say we have N autonomous systems, and they want to peer with one another. If

we use the approach described earlier, each pair of ASes needs to set up a peering relationship.

That will be quite complicated.

Most Internet exchanges provide a mechanism to simplify this. They provide a special server

called route server. All these N autonomous systems will only need to peer with this route

server. When the router server receives a route from a participant over BGP, it re-distributes the

routes to all other connected participants. The route server function pretty much like multicast:

any BGP route sent to the router server will be received by everybody that peers with the route

server.

It should be noted that route server is not a real BGP peer, and its behavior is different from

a real BGP peer. Most importantly, it does not add its own ASN to the path, nor does it change

the next-hop attribute of the route. It is transparent to other BGP routers, and will not affect

the outcome of the BGP protocol. Peering via a route server is equivalent to peering directly. Its

main purpose is solely to make peering among many BGP routers easier.
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In our Emulator, AS-2, AS-3, and AS-4 peer with one another at IX-100. Instead of peering

directly, they use the route server approach. If we go to AS-2’s BGP router at IX-100, we can

see the following BGP entry in the configuration file. It creates a peer with 10.100.0.100,

which is the route server provided by IX-100. AS-3’s and AS-4’s BGP routers do the same.

protocol bgp p_rs100 {
ipv4 {
table t_bgp;
import filter {

bgp_large_community.add(PEER_COMM);
bgp_local_pref = 20;
accept;

};
export where bgp_large_community ˜ [LOCAL_COMM, CUSTOMER_COMM];
next hop self;

};
local 10.100.0.2 as 2;
neighbor 10.100.0.100 as 100; 	Peer with the route server

}

On the router server, 10.100.0.100, a peering entry is needed for each of AS-2, AS-3,

and AS-4, with the "rs client" option turned on. All these "protocol bgp" entries

will have the same content, except for the neighbor option. Here is the example for the

peering with AS-2.

protocol bgp p_as2 {
ipv4 {

import all;
export all;

};
rs client;
local 10.100.0.100 as 100;
neighbor 10.100.0.2 as 2; 	Peer with AS-2

}

30.7 BGP UPDATE Message
When two BGP routers peer with each other, they use a TCP connection to establish a BGP

session between themselves. The default port number for the BGP protocol is 179. The peers

then send BGP messages to each other using the connection. BGP messages use a fixed-size

header, which includes a type field, indicating what type of message it is. There are five types of

BGP messages:

• Open message: for establishing BGP connections

• Update message: for transferring routing information between BGP peers.

• Keepalive message: for checking whether the peers are still reachable.

• Notification message: for notifying BGP peers of errors.

• Route-refresh message: a message type to support the Route Refresh Capability.

The BGP UPDATE message is the most important message, so we will only focus on this
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Length of Withdrawn Routes Section (2)

Withdrawn Routes

Length of Path Attributes Section (2)

Path Attributes

PrefixPrefix length (1)

PrefixPrefix length (1)

Route withdrawals

Route advertisement
......

Figure 30.7: BGP Update message

type in this chapter. The format of the BGP UPDATE message is depicted in Figure 30.7.

The number in the parentheses is the number of bytes for that field. Fields without a length

specification have a variable length. As we can see, an UPDATE message contains two types of

update information: route withdrawals (for withdrawing previously announced routes) and route

advertisements (for new or updated routes).

30.7.1 Route Withdrawal

When a BGP’s link to a peer is broken, the peer is no longer reachable directly, so all the routes

coming from that link are no longer valid. If any of these routes happens to be selected as

the best route advertised to the other peers, the BGP router needs to withdraw that route. The

withdrawal may trigger a chain effect, starting from the peers, to their peers, and so on.

Experiment. Let us intentionally disable the BGP session between AS-164 and AS-12 from

the map (there is a button for this). Before doing so, we start the tcpdump program on

AS-150’s BGP router to capture BGP packets.

// Display the captured packets directly
# tcpdump -nti any -vvv "tcp port 179"

// Save the captured packets to a PCAP file
# tcpdump -i any -w /tmp/bgp.pcap "tcp port 179"

We can either display the captured packets using tcpdump inside the container (the first

command), or save the captured packets to a pcap file and then use Wireshark outside of the

container to display the packets (see § 30.4.1). For reader’s convenience, the file (bgp.pcap)

used in this experiment is also included in the emulation folder.

The breaking of the link between AS-164 and AS-12 has triggered route withdrawals

throughout the Emulator. This is because AS-12 is the only service provider for AS-164, so if

that peering link is broken, nobody knows how to reach AS-164. Therefore, all the autonomous
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systems will withdraw that route. The following is the route withdrawal message sent from

AS-3 to AS-150 (Packet 9 in bgp.pcap).

Internet Protocol Version 4, Src: 10.100.0.3, Dst: 10.100.0.150
Transmission Control Protocol, Src Port: 179, Dst Port: 33905, ...
Border Gateway Protocol - UPDATE Message

Marker: ffffffffffffffffffffffffffffffff
Length: 27
Type: UPDATE Message (2)
Withdrawn Routes Length: 4
Withdrawn Routes

10.164.0.0/24
Withdrawn route prefix length: 24
Withdrawn prefix: 10.164.0.0

Total Path Attribute Length: 0

This BGP UPDATE message only contains a route withdrawal message. The length of the

path attribute field is zero, indicating that there is no route advertisement in this update.

Facebook outage. On October 4th, 2021, Facebook, including Instagram and WhatsApp,

suffered a massive outage, which took nearly six hours to resolve. The cause of the outage

involved BGP route withdrawals. According to ?, “During one of these routine maintenance jobs,

a command was issued with the intention to assess the availability of global backbone capacity,

which unintentionally took down all the connections in our backbone network, effectively

disconnecting Facebook data centers globally.” Although this by itself was a big problem, it

should not take very long to fix. It was the secondary issue that made the situation much worse.

When Facebook’s DNS servers found out that they could not speak to the data centers,

according to the design, their corresponding BGP speakers withdrew the routes to these DNS

servers. That essentially took Facebook’s DNS servers off the Internet. They were still oper-

ational, but nobody knew how to reach them. DNS is so essential to the Internet that without

it many of the internal tools used by Facebook could not work, making it very hard for the

investigation and communication to be conducted by Facebook engineers.

30.7.2 Route Advertisements

After a BGP router establishes a session with each of its peers, it advertises all its selected

routes to the peers. After that, it only advertises incremental updates. For example, if the BGP

router has learned a better route to a destination, it sends an update to its peers, advertising

this new route. Whether a peer chooses this route or not is up to the peer. If the peer does not

choose this route, then the peer will not further advertise the route. However, if the peer indeed

chooses this route as its best route, it will further advertise the route to its own peers. Each route

advertisement contains two sections:

• Path attributes: This is a list of attributes associated with the path. Each networking

equipment vendor can create their own BGP attributes, but some attributes are mandatory,

including Origin, AS path, and Next hop.

– Origin: defines the origin of routing information, i.e., how a route became a BGP

route. For example, is the route learned from an internal or external routing protocol?
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– AS path: the list of autonomous systems that need to be traversed to reach the

specified destination.

– Next hop: the next-hop router for the path. If a peer picks this route, it should route

packets to this next-hop router.

• Network Layer Reachability Information (NLRI): This is the IP prefix that can be reached

from the specified path. Multiple networks may have the same path and path attributes, so

the NLRI section can contain multiple network prefixes.

Experiment 1. Let us take a look at a concrete route advertisement message. Previously, we

have disabled the BGP session between AS-164 and AS-12. Now let us enable it and observe the

BGP traffic triggered by the action. We observe from AS-150’s BGP router using tcpdump.

The enabling of the BGP session triggers a series of route advertisements across the Internet.

First, AS-164’s BGP router will advertise to its peer AS-12 the prefix 10.164.0.0/24,

which is owned by AS-164 in the Emulator. The peer will then further advertise the route to its

own peers, adding its ASN to the front of the AS path, and so on. Eventually, when the route

advertisement reaches AS-150, we see the following BGP UPDATE message (Packet 17):

Internet Protocol Version 4, Src: 10.100.0.3, Dst: 10.100.0.150
Transmission Control Protocol, Src Port: 179, Dst Port: 33905, ...
Border Gateway Protocol - UPDATE Message

Marker: ffffffffffffffffffffffffffffffff
Length: 94
Type: UPDATE Message (2)
Withdrawn Routes Length: 0
Total Path Attribute Length: 67
Path attributes

Path Attribute - ORIGIN: IGP
Path Attribute - AS PATH: 3 12 164
Path Attribute - NEXT HOP: 10.100.0.3
Path Attribute - LARGE_COMMUNITY: 3:1:0 12:1:0 164:0:0

Network Layer Reachability Information (NLRI)
10.164.0.0/24

NLRI prefix length: 24
NLRI prefix: 10.164.0.0

From this UPDATE message, we can see a path to AS-164’s network 10.164.0.0/24.

It goes through AS-3 and AS-12, before reaching AS-164. If this route is selected by AS-150

for routing, packets going from AS-150 to the destination will be routed to the next-hop router

10.100.0.3, which is a BGP router in AS-3.

Experiment 2. Let us stop AS-150’s BGP router and then start it again (the commands are

listed below). From the captured BGP packets, we can see the OPEN message type (e.g., Packets

66 and 68). That is when the BGP router is establishing BGP sessions with the peers. After

the sessions are established, the peers will advertise the routes that they know to AS-150. For

example, in Packet 78, we can see a list of UPDATE messages were sent from AS-2 to AS-150;

in Packet 101, a list of UPDATE messages were sent from AS-3 to AS-150.

// Commands to shutdown and restart the BIRD daemon (on AS-150)
# birdc down
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# service bird start

// Route advertisement from AS-2 to AS-150
Internet Protocol Version 4, Src: 10.100.0.2, Dst: 10.100.0.150
Transmission Control Protocol, Src Port: 53365, Dst Port: 179, ...
Border Gateway Protocol - UPDATE Message
Border Gateway Protocol - UPDATE Message
... (omitted) ...
Border Gateway Protocol - UPDATE Message
Border Gateway Protocol - UPDATE Message 	This one is expanded

Marker: ffffffffffffffffffffffffffffffff
Length: 82
Type: UPDATE Message (2)
Withdrawn Routes Length: 0
Total Path Attribute Length: 51
Path attributes

Path Attribute - ORIGIN: IGP
Path Attribute - AS_PATH: 2 4
Path Attribute - NEXT_HOP: 10.100.0.2
Path Attribute - LARGE_COMMUNITY: 2:2:0 4:0:0

Network Layer Reachability Information (NLRI)
10.4.0.0/24
10.4.1.0/24

Border Gateway Protocol - UPDATE Message
Border Gateway Protocol - UPDATE Message

30.7.3 TTL and BGP TTL Security Hack

One thing that we might notice is that in the IP header of all the BGP UPDATE messages, the

Time-To-Live (TTL) field is always 1, indicating that the life span of the packet is only one hop.

Therefore, the packet is only visible within the sender’s direct network, and it will not be routed

out. Why?

Internet Protocol Version 4, Src: 10.100.0.2, Dst: 10.100.0.150
0100 .... = Version: 4
.... 0101 = Header Length: 20 bytes (5)
Differentiated Services Field: 0xc0 (DSCP: CS6, ECN: Not-ECT)
Total Length: 146
Identification: 0x5a0f (23055)
Flags: 0x4000, Don’t fragment
Fragment offset: 0
Time to live: 1
Protocol: TCP (6)
Header checksum: 0x0938
Source: 10.100.0.2
Destination: 10.100.0.150

Transmission Control Protocol, Src Port: 53365, Dst Port: 179, ...
Border Gateway Protocol - UPDATE Message

EBGP peering typically requires two BGP routers to connect directly, such as through a

LAN or a switch. Setting TTL to 1 ensures that only the directly connected peers can receive
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the UPDATE messages.

BGP TTL security hack. Setting TTL to 1 prevents the UPDATE message from going out,

but in terms of security, it is more important to prevent forged UPDATE messages from getting

into the peering network. Since peering is for locally connected BGP speakers, any UPDATE

message coming from the outside must be spoofed and discarded. A very clever way to achieve

that is to set TTL to 255. When a BGP speaker receives an UPDATE message, it checks whether

the TTL is 255; if not, the message will be discarded. Since routers will automatically deduct

the TTL field by one, and the largest TTL value that can be set initially in the packet is 255, if a

packet passes through one router, its TTL value will be less than 255.

The use of a packet’s TTL (for IPv4) or Hop Limit (for IPv6) to verify whether the packet

was originated by an adjacent node on a connected link has been used in many recent pro-

tocols [Pignataro et al., 2007]. In BGP, this mechanism is referred to as BGP TTL security

hack.

By default, BIRD does not use this security mechanism, but it can be enabled by both ends

of a BGP peering session. In the following, we enabled this mechanism in the peering between

AS-150 and AS-3. Once this is enabled, if we look at the UPDATE messages between these two

BGP speakers, we will see that the TTL of the packets becomes 255.

// On as150r-router0-10.150.0.254
protocol bgp u_as3 {

ipv4 {
... (omitted) ...

};
local 10.100.0.150 as 150;
neighbor 10.100.0.3 as 3;
ttl security;

}

// On as3r-r100-10.100.0.3
protocol bgp c_as150 {

ipv4 {
... (omitted) ...

};
local 10.100.0.3 as 3;
neighbor 10.100.0.150 as 150;
ttl security;

}

30.8 Path Selection
BGP routers typically receive multiple routes to the same network. It needs to select one to

forward to its peers, as well as for its own routing. Let us check the route to 10.152.0.0/24
from AS-150’s BGP router. We can see two entries, each with a different AS path, which lists

all the ASes that need to be traversed to reach the location where the network is advertised from.

The example shows that there are two different ways to reach 10.152.0.0/24 (a network in

AS-152), one via AS-2 and the other via AS-3.

# birdc show route all 10.152.0.0/24
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10.152.0.0/24 unicast [u_as2 21:32:21.862] * (100) [AS152i]
via 10.100.0.2 on ix100
Type: BGP univ
BGP.origin: IGP
BGP.as path: 2 12 152
BGP.next_hop: 10.100.0.2
BGP.local_pref: 10

unicast [u_as3 21:32:21.625] (100) [AS152i]
via 10.100.0.3 on ix100
Type: BGP univ
BGP.origin: IGP
BGP.as path: 3 12 152
BGP.next_hop: 10.100.0.3
BGP.local_pref: 10

All these routes are kept in the BGP routing table, but BGP will run a best route selection

algorithm to choose one route as the current best route. This route will be the one announced to

the peers. It is also the one given to the kernel routing table, so routing is based on this selected

route. In the example, the first path (marked by the * symbol) is the one selected for the routing.

We can verify that by looking at the kernel routing table. We can see that 10.100.0.2 is the

next hop, which is the same as the next hop attribute of the first route above.

# ip route show 10.152.0.0/24
10.152.0.0/24 via 10.100.0.2 dev ix100 proto bird metric 32

If for some reasons, the current best route is retracted, BGP re-runs the best route selection

algorithm to find a new best route. Let’s do an experiment. We break the peering between AS-2

and AS-12 at IX-101. This will trigger a series of BGP UPDATE messages. As results, a new

best route is selected. This time, the path via AS-3 is selected over the path via AS-2.

# birdc show route all 10.152.0.0/24
BIRD 2.0.7 ready.
Table master4:
10.152.0.0/24 unicast [u_as3 06:43:44.590] * (100) [AS152i]

BGP.as_path: 3 12 152
BGP.next_hop: 10.100.0.3

unicast [u_as2 12:19:54.061] (100) [AS152i]
BGP.as_path: 2 3 12 152
BGP.next_hop: 10.100.0.2

30.8.1 The Best Path Selection Algorithm

Although different BGP software may implement the path selection differently, they mostly

follow the similar order. The following lists the common criteria used by most algorithms. They

are arranged according to their priorities.

1. Prefer the path with the highest weight.

2. Prefer the path with the highest local preference.
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3. Prefer the path that was locally originated via a network or aggregate BGP subcommand

or through redistribution from an IGP.

4. Prefer the path with the shortest AS path.

5. Prefer the path with the lowest origin type (IGP is lower than EGP).

6. Prefer the path with the lowest multi-exit discriminator (MED).

7. Prefer eBGP over iBGP paths.

8. There are more rules to break the ties; they are omitted here.

Because BIRD does not implement weight, so the the local preference is actually the most

important criterion, and the length of the AS path is the third most important criterion. We will

do some experiments to see how they affect the best path selection.

30.8.2 Local Preference Value
AS-150 peers with both AS-2 and AS-3, which provide the Internet services to AS-150. We call

AS-150 multihomed stub AS, as it connects to two providers. The bandwidth provided by AS-2

is more expensive than that from AS-3, so to save money, AS-150 decides to use AS-3 as the

primary service provider, while using AS-2 as the backup. Namely, AS-150 wants all the traffic

from AS-150 to exit from the AS-3 link, unless this link is broken.

Currently, on AS-150’s BGP router, for some destinations, AS-2 is selected, while for others,

AS-3 is selected. We can verify that by inspecting the kernel routing table. At IX-100, the BGP

router for AS-2 is 10.100.0.2, and the BGP router for AS-3 is 10.100.0.3.

# ip route
10.152.0.0/24 via 10.100.0.2 dev ix100 proto bird metric 32
10.153.0.0/24 via 10.100.0.2 dev ix100 proto bird metric 32
10.154.0.0/24 via 10.100.0.2 dev ix100 proto bird metric 32
10.155.0.0/24 via 10.100.0.2 dev ix100 proto bird metric 32
10.156.0.0/24 via 10.100.0.2 dev ix100 proto bird metric 32
10.160.0.0/24 via 10.100.0.3 dev ix100 proto bird metric 32
10.161.0.0/24 via 10.100.0.3 dev ix100 proto bird metric 32
10.162.0.0/24 via 10.100.0.3 dev ix100 proto bird metric 32
10.163.0.0/24 via 10.100.0.2 dev ix100 proto bird metric 32
10.164.0.0/24 via 10.100.0.2 dev ix100 proto bird metric 32
...

Our goal is to make sure that the AS-3 link is always selected, i.e., for all the external

networks, the next hop router should be 10.100.0.3. We can achieve that using the local

preference value, which is an attribute set on the routes received from a peer. In BIRD, this

value can be set inside the import filter. Originally inside the Emulator, the local preference

values for the routes from AS-2 and AS-3 are both set to 10. We increase the value to 15 for

the routes coming from AS-3.

# The import filter for the AS-2 peering session
import filter {

bgp_large_community.add(PROVIDER_COMM);
bgp_local_pref = 10;
accept;

};

# The import filter for the AS-3 peering session
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import filter {
bgp_large_community.add(PROVIDER_COMM);
bgp_local_pref = 15; 	Change it to 15
accept;

};

After making the changes, we reload the configuration, and check the routing table again.

This time, we can see that the paths via AS-3 are selected for all the destinations, because they

have a higher local preference value.

# birdc configure
Reading configuration from /etc/bird/bird.conf
Reconfigured

# ip route
10.152.0.0/24 via 10.100.0.3 dev ix100 proto bird metric 32
10.153.0.0/24 via 10.100.0.3 dev ix100 proto bird metric 32
10.154.0.0/24 via 10.100.0.3 dev ix100 proto bird metric 32
10.155.0.0/24 via 10.100.0.3 dev ix100 proto bird metric 32
10.156.0.0/24 via 10.100.0.3 dev ix100 proto bird metric 32
10.160.0.0/24 via 10.100.0.3 dev ix100 proto bird metric 32
10.161.0.0/24 via 10.100.0.3 dev ix100 proto bird metric 32
10.162.0.0/24 via 10.100.0.3 dev ix100 proto bird metric 32
10.163.0.0/24 via 10.100.0.3 dev ix100 proto bird metric 32
10.164.0.0/24 via 10.100.0.3 dev ix100 proto bird metric 32
...

Note. The local preference attribute is local to an AS (that is why it is called local). Namely,

the attribute will not be passed to the peer, so the attribute set by one AS will not affect the

path selection of any peer AS. When an AS receives a route from its peer, it sets its own local

preference value.

30.8.3 AS Path Prepending
The local preference set by AS-150 only affects the outbound traffic from AS-150, not the

inbound, so the packets coming into AS-150 might still go through the more expensive AS-2

link. This is because the local preference value set by an AS does not affect how the peers select

their best paths. Let us go to AS-154, and see what path it takes to reach AS-150.

# birdc show route all 10.150.0.0/24
10.150.0.0/24 unicast [u_as2 06:43:44.830] * (100) [AS150i]

via 10.102.0.2 on ix102
BGP.as_path: 2 150
BGP.next_hop: 10.102.0.2
BGP.local_pref: 10

unicast [u_as4 06:43:44.830] (100) [AS150i]
via 10.102.0.4 on ix102
BGP.as_path: 4 2 150
BGP.next_hop: 10.102.0.4
BGP.local_pref: 10
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unicast [u_as11 06:43:44.830] (100) [AS150i]
via 10.102.0.11 on ix102
BGP.as_path: 11 2 150
BGP.next_hop: 10.102.0.11
BGP.local_pref: 10

We can see that the route with the AS path "2 150" is selected as the best path. Therefore,

from AS-154, the packets to 10.150.0.0/24 will be given to the AS-2 autonomous system,

and eventually reach AS-150 from AS-2 link, the more expensive one. How do we tell the rest

of the Internet not to take that path?

AS path prepending is a technique for influencing inbound routing to an AS. The idea is

to artificially increase the length of the AS path when announcing a route to a particular peer,

by prepending its own autonomous system number (once or several times) to the AS path.

According to the path selection algorithm, if the local preference values are the same, the route

with the shortest AS path will be selected.

The AS path prepending can be conducted inside the export filter, i.e., when a route is

exported to the peer. In AS-150’s BGP configuration, the original export filter for the AS-2

peer is a where condition, which only exports the routes that satisfy a condition. To add the

AS path prepending to the filter, we change the filter to the following:

protocol bgp u_as2 {
ipv4 {

table t_bgp;
...
export filter {

if bgp_large_community ˜ [LOCAL_COMM, CUSTOMER_COMM] then {
bgp path.prepend(150);
bgp path.prepend(150);
accept;

}
reject;

};
};
..

}

After reloading the configuration on AS-150, we go to the AS-154’s BGP router, and check

the BGP routing table. We can see that now the best path is through AS-4, AS-3, before reaching

AS-150, so the inbound traffic to AS-150 will come from the AS-3 link. The path via the AS-2

link is listed as the third route. We can see that due to the two instances of 150 prepended to

the AS path, the length becomes four. Given that the local preference values of all these three

routes at AS-154 are the same, the length of the AS path becomes the deciding factor.

# birdc show route all 10.150.0.0/24
BIRD 2.0.7 ready.
Table master4:
10.150.0.0/24 unicast [u_as4 13:55:42.780] * (100) [AS150i]

BGP.as_path: 4 3 150
BGP.local_pref: 10
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unicast [u_as11 13:55:42.778] (100) [AS150i]
BGP.as_path: 11 3 150
BGP.local_pref: 10

unicast [u_as2 13:55:42.778] (100) [AS150i]
BGP.as_path: 2 150 150 150 	AS path prepending
BGP.local_pref: 10

30.9 BGP Large Communities
When a BGP router sends routes to its peers, they do not send all the routes they know. What

routes are sent depends on many factors, such as the region of the peers, the business relation-

ship between the peers, and policies. To help BGP routers make such decisions, additional

information needs to be attached to each route, because the predefined set of route attributes

cannot capture such information. The BGP communities are created to serve this goal.

BGP communities are attribute tags that can be applied to incoming or outgoing prefixes to

achieve some common goal [Li et al., 1996]. For example, ISP can label the incoming routes

from a particular autonomous system with a special attribute value, so when it forwards the

route to its peers, it can choose to forward the routes only to a particular set of peers (hence the

community). The BGP community attribute makes it convenient to enforce such a policy.

The original BGP communities standard was proposed in RFC1997 [Li et al., 1996], but it

has limitations. That is why the BGP Large communities standard was proposed [Snijders et al.,

2017]. BGP Large Communities are composed of three 4-byte integers. Using the canonical

notation, this format can be summarized as “ASN:Function:Parameter”.

• The first integer is the Global Administrator field, whose value is the Autonomous System

Number (ASN) of the AS that has defined the meaning of the remaining two 4-octet fields.

Since ASN is unique, each community is unique globally.

• The second integer is the function identifier. This field defines the meaning of the

community. Each AS can define their own functions.

• The third integer is the parameter value.

There are many applications of the BGP Large Communities, such as identifying routes by

their geographically locations (countries, continents, etc.), the business relationships between

peers (customers, providers, or peers), and many other aspects. When exporting and importing

routes, actions can be applied to these routes based on which communities they belong to. RFC

8195 provides many examples [Snijders et al., 2017].

30.9.1 Communities Defined in the Emulator
In our Internet emulator, we use the BGP large communities to capture the business relationships

among peers. These relationships will affect how a route is exported to peers. Let’s use AS-150

as an example to show how the BGP large communities are used in our setup. In this autonomous

system, we defined four communities.

define LOCAL_COMM = (150, 0, 0); # large community value: 150:0:0
define CUSTOMER_COMM = (150, 1, 0); # large community value: 150:1:0
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define PEER_COMM = (150, 2, 0); # large community value: 150:2:0
define PROVIDER_COMM = (150, 3, 0); # large community value: 150:3:0

When we import or export a route, we can add communities to a route, or delete communities

from it. We can also check whether a route belongs to a community or not. These can be done

inside the export and import filters. We show a few examples in the following.

# Check whether the route belongs to a community
if ((150, 1, 0) ˜ bgp_large_community) then return true;

# Delete community from the route
bgp_large_community.delete([(150, *, *)]);
bgp_large_community.delete([(150, 2, 0)]);

# Add community to the route
bgp_large_community.add((150, 0, 0));
bgp_large_community.add([(150, 1, 0), (150, 2, 0)]);

30.9.2 The Local Community

As we have discussed earlier, in the BGP setup, the direct protocol is used to generate the

routes to the local networks. These routes are put inside the t direct table first, and then

they will be exported to the t bgp table (containing all the BGP routes) through a pipe. A filter

is applied during the exporting, so the routes are tagged with the LOCAL COMM community,

indicating that the routes are locally generated.

protocol pipe {
table t_direct;
peer table t_bgp;
import none;
export filter { bgp_large_community.add(LOCAL_COMM); ... };

}

If we use the static protocol to provide pre-defined route, we put them in the LOCAL COMM
community, indicating that they are locally generated.

protocol static {
ipv4 {

table t_bgp;
};
route 10.150.1.0/24 via 10.150.0.254 {

bgp_large_community.add(LOCAL_COMM);
};
route 10.150.2.0/24 blackhole {

bgp_large_community.add(LOCAL_COMM);
};

}
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30.9.3 The Provider and Customer Communities

Let us look at the peering between AS-150 and AS-2. AS-2 is a transit AS, which is the

Internet service provider to AS-150. In the real world, AS-150 will pay AS-2 to get the

service. Therefore, in AS-150’s BGP configuration, the routes from AS-2 are put in the

PROVIDER COMM community, indicating that the routes are from the provider. Correspondingly,

in AS-2’s BGP configuration, all the routes from AS-150 are put in the CUSTOMER COMM
community. The following is AS-150’s configuration.

protocol bgp u_as2 {
ipv4 {
table t_bgp;
import filter {
bgp_large_community.add(PROVIDER_COMM);
...

};
export where bgp_large_community ˜ [LOCAL_COMM, CUSTOMER_COMM];

};
...

}

Using the community information, an autonomous system can now enforce the policies

corresponding to its relationship with peers. As a provider to AS-150, AS-2 is obligated to serve

as the transit for AS-150’s networks and its customer’s networks (in our setup, AS-150 is a stub

AS, so it does not have customers). This policy is enforced from the export filter of AS-150.

We can see that AS-150 only exports the routes from the LOCAL COMM and CUSTOMER COMM
communities to AS-2. This means, only the routes locally generated by or the routes from

AS-150’s customers are sent to AS-2. Routes in other communities (such as the PEER COMM
community discussed below) will not be sent to AS-2.

30.9.4 The Peer Community

AS-150 also peers with another stub autonomous system AS-151, but they are not in a provider-

to-customer peering relationship. They peer with each other so the traffic between them can go

to each other directly, instead of going through another autonomous system. This is for mutual

benefit, so typically they do not pay each other.

Because of this kind of business relationship, they do not want to become a provider to the

other. How they forward the routes to each other will be based on the peer-to-peer policy, not on

the provider-to-customer policy. Let’s see how such a policy can be enforced using the BGP

large communities. Here is the peering configuration between AS-150 and AS-151:

protocol bgp p_as151 {
ipv4 {
table t_bgp;
import filter {

# Put the route in the PEER_COMM community
bgp_large_community.add(PEER_COMM);
...

};
# Only export the routes from the specified communities
export where bgp_large_community ˜ [LOCAL_COMM, CUSTOMER_COMM];
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};
...

}

When two autonomous systems are in the peer-to-peer relationship, none of them will serve

as the transit for the others in either upstream or downstream directions. Here is how this is

achieved using the BGP large communities.

• When AS-150 exports routes to AS-151, it only exports the routes from these two

communities: LOCAL COMM and CUSTOMER COMM. Namely, it only exports the routes

belonging to itself and its customers (it does not have customers in our setup). It will

not export the routes from AS-2 to its peer AS-151, because those routes are put in the

PROVIDER COMM community (see the peering setup with AS-2). Therefore, even though

AS-150 can reach the rest of the Internet via AS-2, it does not tell AS-151, so AS-151 will

never use AS-150 to reach the Internet even if AS-151 loses its connection with its own

Internet service providers. This policy essentially prevents AS-151 from using AS-150 as

a upstream transit to reach the Internet.

• When AS-150 import routes from AS-151, it put the routes in the PEER COMM community.

Based on the export filter defined in the peering with AS-2, AS-150 only exports the

routes belonging to itself and its customers to AS-2, not the routes in the PEER COMM
community. Therefore, even though AS-150 can reach AS-151, it does not announce

that to AS-2, so AS-2 will never route the AS-151 bound packets to AS-150, essentially

preventing AS-2 from using AS-150 as a downstream transit to reach AS-151.

In the Emulator, at IX-100, the autonomous systems AS-2, AS-3, and AS-4 peer with one

another. These ASes emulate the Tier-1 autonomous systems, and the peering among them are

the peer-to-peer type, not the provider-to-customer type, as they will not provide transit services

to the others.

30.10 BGP for Transit Autonomous System
So far, we have only looked at stub autonomous systems, which typically has only one BGP

router. Another type of AS has multiple BGP routers, located in different Internet exchanges,

where it peers with other ASes. Once packets get into its networks, they will be pulled from one

IX to another IX (typically via some internal routers), and eventually be handed over to another

AS. This type of AS provides the transit service for other ASes. That is how the hosts in one AS

can reach the hosts in another AS. This special AS is called Transit AS.

Figure 30.8 shows the diagram of AS-3, a transit AS inside the Emulator. It has four BGP

routers, located in four different cities, where they peer with other autonomous systems. Inside

AS-3, these four BGP routers are connected via AS-3’s internal networks. Traffic entering from

one BGP router will be routed towards the BGP router in another city, where the traffic can exit

and get on to another autonomous system.

The question is how these BGP routers inside the same AS work together. When a packet

going to AS-161 arrives at router A, it should be routed towards router D, because D is the only

router that connects to AS-161, but how does A know that? Moreover, how can the packets be

routed inside AS-3. These are achieved using the following two protocols. We will study them

in the rest of this section.
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IX 100: New York City

IX 103: Miami

IX 104: Boston

IX 105: Houston

AS 190

AS 150

AS 2 AS 4
AS 4

AS 12

AS 2

AS 11

AS 170

AS 190

AS 160

AS 161

AS 162

AS 3's Internal Networks
A B

DC

AS 3

Figure 30.8: A transit AS in the Emulator

• All the BGP routers inside AS-3 communicate with one another via the Internal BGP

(IBGP) protocol, so they can forward to one another the BGP routes obtained from their

external peers.

• All the routers, including the BGP routers and the internal non-BGP routers, run an

Interior Gateway Protocol (IGP) protocol, so they know how to reach the networks

contained in the route.

30.10.1 Internal BGP (IBGP)
Just like the peering of BGP routers from different autonomous systems, for the BGP routers in

the same autonomous systems to exchange information, they also need to peer with each other

and run the BGP protocol to exchange information. The BGP protocol conducted by the BGP

routers inside the same AS is called Internal BGP (IBGP), while the BGP protocol conducted

by the BGP routers from different ASes is called External BGP (EBGP).

In BIRD, the way to define an IBGP session is the same as defining an EBGP session. When

we establish a BGP session between two routers with the same ASN, it will be considered as an

IBGP session, and when the session is between two routers with different ASNs, the session is

considered as an EBGP session. IBGP and EBGP are basically the same protocol, except for the

following different behaviors:

• In IBGP sessions, when sending routes to peers, routers will not prepend their own ASN

in the AS PATH, and the next-hop attribute will not be altered either.

• RFC 4271 prohibits the advertisement of the routes received from an IBGP peer to another

IBGP peer; otherwise, there will be a loop. This is because IBGP does not add their

own information to the AS path, so BGP routers will not be able to know whether their

peers already know the AS path or not. If forwarding is enabled, a BGP router will

keep forwarding information to its peers, creating an endless loop. Because there is no
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forwarding, RFC 4271 states that all the BGP routers within a single AS must be fully

meshed, i.e., all BGP routers peer with one another internally.

This “full mesh” requirement does not scale well when there are many IBGP speakers.

An alternative is to use a route reflector [Bates et al., 2000], which is a special type of

IBGP speaker. Unlike other IBGP speakers, a route reflector is allowed to advertise an

IBGP learned route to another IBGP peer. Using this approach, IBGP routers can simply

peer with a route reflector, through which, they can now receive the route advertised from

the other IBGP speakers. There is no need for them to be fully meshed. Route reflector is

used more in the real world since it simplifies management and configuration.

• EBGP peers are typically directly connected, while IBGP peers are usually multiple hops

away. Therefore, IBGP peers rely on the internal routing to reach one another.

AS-3 has four BGP routers, so each of them must peer with the other three. Let us take a

look at AS-3’s BGP router at IX-103 (Miami). The following is its IBGP configuration.

protocol bgp ibgp1 {
ipv4 {

table t_bgp;
import all;
export all;
igp table t_ospf;

};
local 10.0.0.7 as 3;
neighbor 10.0.0.6 as 3; 	IBGP peer

}
protocol bgp ibgp2 {

ipv4 {
... same is ibgp1 ...

};
local 10.0.0.7 as 3;
neighbor 10.0.0.5 as 3; 	IBGP peer

}
protocol bgp ibgp3 {

ipv4 {
... same is ibgp1 ...

};
local 10.0.0.7 as 3;
neighbor 10.0.0.8 as 3; 	IBGP peer

}

Loopback interface. A BGP router has multiple IP address (one for each network interface),

so which IP address should be used in the IBGP peering? Any of the IP addresses will work,

but if we use the IP address of a particular network interface, if that interface goes down or

gets disabled, the IP address become unreachable, and the peering using the IP address will fail

(even though the peers can still reach each other via another path).

To solve this problem, it is suggested that a loopback interface is used in the IBGP peering.

The loopback interface is virtual and always stays up. Therefore, the IBGP session can still

remain intact even if some other interfaces fail. In the event of link failure, the interior routing

protocol will automatically find an alternate path to the peer’s loopback IP address.
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In the configuration, each of the 10.0.0.x/32 addresses is the IP address of the loopback

interface (called dummy in our setup). These addresses are announced via the OSPF routing

protocol, so all the routers inside the same AS know how to reach these addresses.

The NEXT HOP attribute. When a BGP router sends a route to an internal BGP peer that is

multiple hops away, the NEXT HOP route attribute makes no sense to the peer, because this

next hop (assuming it is X) is the addresses of a boundary routers directly connected to the

sender, not the receiver. The peer must figure out what the immediate next hop is in order to

reach X, as well as finding the distance to X (for path selection purpose). To achieve that, after

receiving a route from an internal BGP peer, the BGP router will do a route lookup using a

routing table. This routing table is an IGP routing table containing the AS-internal routes. The

"igp table" entry specifies this IGP routing table. IGP will be discussed a little bit later.

30.10.2 Experimenting with IBGP in AS-3
Let us go to AS-3’s BGP router at IX-103, and show the route to 10.150.0.0/24, which is

AS-150’s network. AS-150 peers with AS-3 at IX-100, not at IX-103, but due to IBGP, AS-3’s

BGP router at IX-103 now knows how to reach AS-150. See the followings:

# birdc show route all 10.150.0.0/24
BIRD 2.0.7 ready.
Table master4:
10.150.0.0/24 unicast [ibgp1 ...] * (100/20) [AS150i]

via 10.3.0.254 on net_100_103
Type: BGP univ
BGP.origin: IGP
BGP.as_path: 150
BGP.next_hop: 10.100.0.150
BGP.local_pref: 30
BGP.large_community: (3, 1, 0) (150, 0, 0)

We can see that the next hop router is still 10.100.0.150, which is AS-150’s BGP

router at IX-100. Obviously, the AS-3’s BGP router at IX-103 is not connected to this next-

hop router, so it conducts a route lookup using its routing table, and find out that to reach

10.100.0.150, the actual next-hop router should be 10.3.0.254. That is why when we

look at the kernel routing table, we do see the correct next-hop router information.

# ip route show 10.150.0.0/24
10.150.0.0/24 via 10.3.0.254 dev net_100_103 proto bird metric 32

Disabling IBGP. Let us go to AS-3’s BGP router at IX-100, disable one of the IBGP sessions,

and see what happens. We run the BIRD client program birdc first, and then disable ibgp1,

which is the IBGP peering between the router at IX-100 and the router at IX-103.

# birdc
bird> show protocols
Name Proto Table State Since Info
...
ibgp1 BGP --- up 20:19:03.800 Established
ibgp2 BGP --- up 20:19:11.921 Established
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ibgp3 BGP --- up 20:20:50.238 Established

bird> disable ibgp1
bird> show protocols ibgp1
Name Proto Table State Since Info
ibgp1 BGP --- down 20:26:44.526

Let us go to AS-3’s BGP router at IX-103, and check how to reach AS-150’s network

10.150.0.0/24. Since AS-150 peers with AS-3 at IX-100, but inside AS-3, the IBGP

session between IX-100 and IX-103 is disabled, the BGP router at IX-103 does not know how

to reach AS-150. That is why we get the following result: AS-150 is not reachable. To enable

the IBGP session again, we can use "enable ibgp1".

# birdc show route all 10.150.0.0/24
BIRD 2.0.7 ready.
Network not found

# ip route show 10.150.0.0/24
# 	No entry in the kernel routing table

# ping 10.150.0.71
ping: connect: Network is unreachable

30.10.3 Interior Gateway Protocol (IGP)
Routers inside an autonomous system need to communicate with each other, so they can tell

each other what networks they are connected to, and every one can figure out the best path to

get to those networks. This is the purpose of the Interior Gateway Protocol (IGP). There are

several IGP protocols, including OSPF (a link state routing protocol) and RIP (a distance-vector

routing protocol). BIRD supports both of them, but the Emulator only uses OSPF.

Detailed configuration of OSPF can be quite complicated, and it is beyond the scope of this

chapter. We will study how the BGP routers in the Emulator configure OSPF. More specifically,

we will look at the OSPF configuration on AS-3’s BGP router at IX-100. First, let us list all the

network interfaces on this router:

# ip address
1: lo:

link/loopback 00:00:00:00:00:00 brd 00:00:00:00:00:00
inet 127.0.0.1/8 scope host lo

2: dummy0:
link/ether 8a:90:16:86:29:9f brd ff:ff:ff:ff:ff:ff
inet 10.0.0.5/32 scope global dummy0

5311: net 100 103@if5312:
link/ether 02:42:0a:80:03:02 brd ff:ff:ff:ff:ff:ff link-netnsid 0
inet 10.3.0.254/24 scope global net_100_103

5319: net 100 105@if5320:
link/ether 02:42:0a:80:04:02 brd ff:ff:ff:ff:ff:ff link-netnsid 0
inet 10.3.1.254/24 scope global net_100_105

5321: ix100@if5322:
link/ether 02:42:0a:80:1e:03 brd ff:ff:ff:ff:ff:ff link-netnsid 0
inet 10.100.0.3/24 scope global ix100
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The following is the OSPF configuration on the BGP router. An area with ID 0 is called a

backbone area. All other areas need to be connected to the backbone area. In our configuration,

we put all routes in the backbone area to make things simple.

protocol ospf ospf1 {
ipv4 {

table t_ospf; # Store the routes in this table
import all;
export all;

};
area 0 {

interface "net_100_103" { hello 1; dead count 2; };
interface "net_100_105" { hello 1; dead count 2; };
interface "dummy0" { stub; };
interface "ix100" { stub; };

};
}

Other than the lo interface, all the network interfaces on the BGP router are included in

the backbone area, so routes to the networks attached to these interfaces will be generated and

disseminated via the OSPF protocol.

• The net 100 103 and net 100 105 interfaces connect the BGP router to the internal

networks. These networks should participate in the OSPF protocol. Namely, routes should

be generated for these two networks, and the BGP router will exchange route information

with the routers inside these networks.

The option "hello 1" means sending periodic hello messages every 1 second; "dead
count 2" means when the router does not receive any message from a neighbor in 2*1
seconds, it will consider the neighbor down.

• The IP address of the dummy0 interface (a loopback interface) is the one used in IBGP,

so it must participate in the OSPF protocol; otherwise, the peers will not know how to

reach the IP address. The stub means that the information from this network will be

used in the OSPF protocol, but we will not run OSPF on this network (this network has

only one host).

• The ix100 interface connects AS-3’s BGP router to the external network provided by

IX-100 for the peering purpose. We do need to include this network in the OSPF protocol,

so the internal router knows how to reach this network. The stub option indicates that

the router will not run the OSPF protocol with anybody on this external network. This is

because the hosts on this network do not belong to AS-3; they are outsiders. We do not

want to leak the internal network information to the outside, nor do we want the outsider

to manipulate our internal routes using OSPF. We should only run OSPF with the routers

inside the same autonomous system.

30.10.4 Experimenting with IGP in AS-3
Let us do some experiments with IGP inside AS-3. We will disable the OSPF routing protocol,

and see how it affects the routing. Using the following commands, we disable the OSPF protocol

on AS-3’s BGP router at IX-100. We refer to this BGP router as X.
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# bridc
birdc> show protocols
...
ospf1 OSPF t_ospf up 19:49:43.343 Running
...

birdc> disable ospf1
birdc> show protocols ospf1
ospf1 OSPF t_ospf down 19:57:37.187

After disabling the OSPF, we check the kernel routing table on X. We see the following

results (only the unreachable destinations are listed; the others are omitted).

# ip route
unreachable 10.3.2.0/24 proto bird metric 32 	Internal network
unreachable 10.3.3.0/24 proto bird metric 32 	Internal network
unreachable 10.160.0.0/24 proto bird metric 32 	AS-160’s network
unreachable 10.161.0.0/24 proto bird metric 32 	AS-161’s network
unreachable 10.162.0.0/24 proto bird metric 32 	AS-162’s network
unreachable 10.170.0.0/24 proto bird metric 32 	AS-170’s network

Without OSPF, router X does not know how to reach the other two internal networks in

AS-3, as X is not directly connected to them. Moreover, X does not know how to reach the edge

routers of AS-160, AS-161, AS-162, and AS-170, as they are connected to the BGP routers

at other locations. Without OSPF, those BGP routers cannot share their routes to those edge

routers with X, so X will not be able to learn how to reach them.

The experiment clearly shows that for an AS with multiple BGP routers at different locations,

an interior gateway protocol is essential. When we specify the IBGP protocol, we have to specify

an IGP table using the igp option, so each BGP router can use the table to find out the route to

the next-hop routers that are multiple hops away.

protocol bgp ibgp1 {
ipv4 {

table t_bgp;
import all;
export all;
igp table t ospf;

};
local 10.0.0.5 as 3;
neighbor 10.0.0.6 as 3;

}

30.11 IP Anycast: a BGP Application
IP Anycast is a network addressing and routing methodology in which a single IP address is

shared by multiple machines (usually in different locations). When we send a packet to this IP

address, one of the computers will get the packet. Exactly which one will get it is hard to tell,

because it depends on the routing. IP anycast is naturally supported by BGP. A well-known

applications of IP anycast is DNS. There are 13 IP addresses for the DNS root servers, but each

IP address exists in multiple locations. If we send a DNS query to a root IP address, one of
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the servers with that IP address will get the query and reply to us. Which one gets the packet

depends on the BGP routing.

30.11.1 An Example of IP Anycast
We will use a concrete example to illustrate how IP anycast works. It will be better to use the

visualization map that comes with the Emulator. The map is hosted on a web server with this

URL: http://localhost:8080/map.html. In the Emulator (see Figure 30.9), AS-190

has two Points of Presence (PoP), one at IX-100 (where it peers with AS-4), and the other at

IX-105 (where it peers with AS-3). It is quite common for a transit AS to have PoPs at multiple

locations, and these PoPs will be connected via the internal networks of the AS. However,

AS-190 is just a stub AS, and its two PoPs are disconnected.

IX-100: New York City IX-105: Houston
InternetAS-4

AS-3

AS-190
10.190.0.100

10.190.0.100

AS-190

Figure 30.9: AS-190 and IP Anycast

A closer look at the networks at AS-190’s two PoPs reveals that these two networks have the

identical network prefix 10.190.0.0/24. Both networks have a host with the identical IP

address 10.190.0.100. If we send a packet to this IP address from two different locations,

will they both receive the packet, or will only one of them get it, which one?

Let us do an experiment first. We run "ping 10.190.0.100" from two different

locations: a host in AS-156 and a host in AS-160. On the map, we set the filter to icmp to

visualize the ICMP traffic. We can see that each ping reaches a different destination, so for

each packet, only one of the hosts with the address 10.190.0.100 gets the packet, not all.

This is not a unicast, not a broadcast, but an anycast.

30.11.2 How IP Anycast Works
When the BGP routers of AS-190 peer with other ASes at two different locations, they both

announce the network prefix 10.190.0.0/24 to their peers, AS-3 and AS-4, who will further

announce the prefix to their peers. Therefore, some ASes, especially well-connected transit

ASes, will see more than one AS paths to this network prefix. For example, if we go to AS-11’s

BGP router at IX-102, and check its BGP routing table, we see three AS paths (the first one is

the selected path):

# birdc show route all 10.190.0.0/24
BIRD 2.0.7 ready.
Table master4:
10.190.0.0/24
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via 10.102.0.4 on ix102
BGP.as_path: 4 190 AS path 


BGP.next_hop: 10.102.0.4

via 10.11.0.253 on net_102_105
BGP.as_path: 3 190 AS path �

BGP.next_hop: 10.105.0.3

via 10.102.0.2 on ix102
BGP.as_path: 2 4 190 AS path �

BGP.next_hop: 10.102.0.2

Therefore, it does not matter whether AS-190 announces its network prefixes from one

location or multiple locations, and whether the network prefixes overlap or not, to BGP, they are

just different AS paths. Each BGP router will use the path selection algorithm to pick the best

path, and announce it to the peers. Since the length of the AS path is an important criterion in

the algorithm, when two AS paths have a tie in the more important criteria (such as the local

preference), the path with a shorter AS path will be selected. This in general means that the

destination closer to the sender will be the one receiving the packet. Of course, this is not always

true, as a shorter AS path does not necessarily mean a shorter distance.

Let us go back to the experiment, and see why the ping packets from AS-156 reach a

different destination than the ones from AS-160. Let us take a look at their BGP routing tables:

-------------------------
From AS-156’s BGP router
-------------------------
# birdc show route all 10.190.0.0/24
BIRD 2.0.7 ready.
Table master4:
10.190.0.0/24 unicast [u_as4 12:18:43.600] * (100) [AS190i]

via 10.102.0.4 on ix102
Type: BGP univ
BGP.origin: IGP
BGP.as_path: 4 190 	AS-190 peers with AS-4 only at IX-100
BGP.next_hop: 10.102.0.4
BGP.local_pref: 10
BGP.large_community: (4, 1, 0) (190, 0, 0) (156, 3, 0)

-------------------------
From AS-160’s BGP router
-------------------------
# birdc show route all 10.190.0.0/24
BIRD 2.0.7 ready.
Table master4:
10.190.0.0/24 unicast [u_as3 12:18:49.109] * (100) [AS190i]

via 10.103.0.3 on ix103
Type: BGP univ
BGP.origin: IGP
BGP.as_path: 3 190 	AS-190 peers with AS-3 only at IX-105
BGP.next_hop: 10.103.0.3
BGP.local_pref: 10
BGP.large_community: (3, 1, 0) (190, 0, 0) (160, 3, 0)
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From the routing table, we can now explain our observations.

• The AS path obtained by AS-156’s BGP router is "4 190". Since AS-190 peers with

AS-4 only at IX-100, this means the packets from AS-156 will be routed towards New

York City, where IX-100 is located.

• The AS path obtained by AS-160’s BGP router is "3 190". Since AS-190 peers with

AS-3 only at IX-105, this means the packets from AS-160 will be routed towards Houston,

where IX-105 is located.

30.11.3 Applications of IP Anycast
IP anycast is mostly used for the stateless communication, such as UDP. This is because there is

no guarantee that the packets to an IP anycast address will always reach the same destination.

If routes changes and different paths are selected by BGP, packets may now reach a different

destination.

The most well-known application of IP anycast is DNS, which uses the stateless UDP

protocol. DNS root servers (A to M) have 13 IP addresses, but they are not just 13 servers.

All these addresses use IP anycast to provide distributed services. For example, the F-Root

server has the IP address 192.5.5.241, which belongs to AS-3557. According to https:
//root-servers.org/, the F-Root has a presence at more than 200 locations, peering

with over 3000 peers (as of September 2021). By providing presence at many locations around

the world, DNS root servers can get closer to the Internet users, which rely on this important

Internet infrastructure.

IP anycast can also be used for content delivery networks to deliver static content via HTTP,

such as images. Although HTTP uses a stateful TCP protocol, the general stability of routes and

statelessness of connections makes anycast also suitable for this type of applications.

30.12 BGP Hijacking Attack
BGP does not have a built-in security mechanism, so there is no mechanism to verify the

authenticity of the data exchanged among the peers. There is no efficient way to verify whether

a route advertisement or withdrawal is legitimate or spoofed. The most common and severe

BGP attack is called BGP hijacking, also known as IP prefix hijacking, prefix hijacking, and IP

hijacking. It can hijack a network prefix, causing the traffic to the target prefix to be rerouted,

and eventually dropped. This type of attack occurs quite frequently on the Internet. Although

most of them are due to router misconfiguration, it does indicate how vulnerable the BGP

protocol is.

30.12.1 Routing Rule: Longest Match
Before talking about how the prefix hijacking works, we need to understand routing a little bit

more. When two prefixes in the routing table overlaps, and a destination matches both prefixes,

which one will be selected?

Let us figure this out using an experiment. We will go to AS-150’s host (10.150.0.71),

ping 10.164.0.71. Using the map, we can visualize the ICMP traffic, so we can see the

packet trace. Now we go to AS-150’s BGP router, and check its routing table. We see one

entry to the 10.164.0.0/24 network. We add a new routing entry to the 10.164.0.0/25
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network, which is a subnet of 10.164.0.0/24. The destination 10.164.0.71 belongs to

both networks, so it matches both routing entries. Which entry will be used?

// On AS-150’s BGP router
# ip route | grep 10.164
10.164.0.0/24 via 10.100.0.2 dev ix100 proto bird metric 32

// Add a new route
# ip route add 10.164.0.0/25 via 10.100.0.3
# ip route | grep 10.164
10.164.0.0/25 via 10.100.0.3 dev ix100
10.164.0.0/24 via 10.100.0.2 dev ix100 proto bird metric 32

We can see that before the new route is added, the ICMP traffic to 10.164.0.71 goes

through the AS-2 autonomous system, because the next-hop router is 10.100.0.2, which

belongs to AS-2. Immediately after the route is added, we can see that the traffic gets re-routed,

and it now goes through 10.100.0.3, which belongs to AS-3.

Although 10.164.0.71 matches with both prefixes in the routing table, one prefix

(10.164.0.0/25) has 25 bits, while the other (10.164.0.0/24) has 24 bits. Routers

choose the longer match, i.e., the more specific route is selected.

From this experiment, we can see if we can add an entry with a more specific prefix, we

can affect router’s decisions. The experiments only shows that the routing is partially affected,

because the final destination is still the same. This is because we have only affected one router.

If we can add such a routing entry to many BGP routers, we may be able to completely change

the routing path. That is exactly the objective of of the BGP prefix hijacking attack.

30.12.2 IP Prefix Hijacking

We will use AS-164 as our attack target. We know that this autonomous system has advertised the

prefix 10.164.0.0/24 (P) to the entire Internet, so every BGP router has an entry in its rout-

ing table for this destination. The prefixes 10.164.0.0/25 (A) and 10.164.0.128/25
(B) are two subnets of P, but jointly, A and B cover the entire address space of P. This can be

seen from the following where we use the binary notation to represent the last octet in the IP

prefix (* means it can be 0 or 1).

10.164.0.0/24 covers 10.164.0.******** 	The target prefix
10.164.0.0/25 covers 10.164.0.0*******
10.164.0.128/25 covers 10.164.0.1*******

If A and B are also in the routing table along with P, any IP address in the 10.164.0.0/24
address space will match either A or B, as well as P, but A or B will be picked over P, because

the length of their prefixes has 25 bits, longer than P’s 24 bits.

The question is how to get A and B into every BGP router. That is quite simple. Attackers

just need to advertise A and B to the entire Internet from a BGP router, telling everybody that

their autonomous system is the origin of these two prefixes, so packets to these networks should

be routed towards them.

Let us try it on the Emulator. We choose AS-150 as the attacker, and AS-164 as the

target. Our job is to hijack the 10.164.0.0/24 network prefix owned by AS-164. We add

the following entry to the BIRD configuration file on AS-150’s BGP router. We need to run

"birdc configure" to load the updated configuration file into the BIRD daemon.



C
op

yr
ig

ht
©

W
en

lia
ng

D
u

700 CHAPTER 30. BGP AND ATTACKS

protocol static hijacks {
ipv4 { table t_bgp; };
route 10.164.0.0/25 blackhole {

bgp_large_community.add(LOCAL_COMM);
};
route 10.164.0.128/25 blackhole {

bgp_large_community.add(LOCAL_COMM);
};

}

This will add two static routes to the BGP routing table. The action blackhole means

that once a packet to these destination reaches this BGP router, it will be dropped, instead of

being routed. AS-150’s BGP router will advertise these two routes to its peers, and eventually

the route advertisement will reach every BGP router on the Internet (Emulator). We can pick a

BGP router, and check its BGP routing table and kernel routing table, we will see both of them:

// On AS-170
# birdc show route all 10.164.0.0/24
10.164.0.0/24 unicast [u_as3 13:26:41.574] * (100) [AS164i]

via 10.105.0.3 on ix105
BGP.as_path: 3 12 164
BGP.next_hop: 10.105.0.3

# birdc show route all 10.164.0.0/25
10.164.0.0/25 unicast [u_as3 13:37:00.597] * (100) [AS150i]

via 10.105.0.3 on ix105
BGP.as_path: 3 150
BGP.next_hop: 10.105.0.3

# birdc show route all 10.164.0.128/25
10.164.0.128/25 unicast [u_as3 13:37:00.597] * (100) [AS150i]

via 10.105.0.3 on ix105
BGP.as_path: 3 150
BGP.next_hop: 10.105.0.3

From the results, we can see that the original AS path of 10.164.0.0/24 is "3 12
164", while the AS paths of the forged ones are "3 150", which leads to the attacker’s au-

tonomous system. In all these paths, the next-hop is the same, which is a router (10.105.0.3)

in AS-3, but, once packets reach this router, they will be routed towards AS-150, instead of the

original destination AS-164. Let us take a look at the routing table on this router.

// On 10.105.0.3
# ip route | grep 10.164
10.164.0.0/24 via 10.3.2.254 dev net_103_105 proto bird metric 32
10.164.0.0/25 via 10.3.1.254 dev net_100_105 proto bird metric 32
10.164.0.128/25 via 10.3.1.254 dev net_100_105 proto bird metric 32

We can see that the router used for the original prefix (the first one) is different from the

one used for the forged prefixes (the second and third ones). Since the forged prefixes will

always be picked over the original one, packets towards 10.164.0.0/24 will be routed to

the BGP router 10.3.1.254. If we take a look at the routing table on this router (see below),

we will see that the packets to 10.164.0.0/24 will be routed to 10.100.0.150, which is
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the BGP router belonging to AS-150 (the attacker). From there, the packets will be dropped due

to the blackhole action in the configuration.

// On 10.3.1.254
# ip route | grep 10.164
10.164.0.0/24 via 10.3.0.253 dev net_100_103 proto bird metric 32
10.164.0.0/25 via 10.100.0.150 dev ix100 proto bird metric 32
10.164.0.128/25 via 10.100.0.150 dev ix100 proto bird metric 32

Using the map. The impact of the attack can be visualized using the Emulator map (see

§ 30.4.1). We set the filter to "icmp && dst 10.164.0.71" on the map to visualize

packet trace. Before launching the attack, we ping 10.164.0.71 from a host machine in one

of the ASes. We can see the packet trace towards the destination. After the attack is launched,

we will see that the packets are immediately rerouted to AS-150, and the ping program will no

longer get any reply back. The prefix 10.164.0.0/24 is completely hijacked.

30.12.3 Fighting Back
On Sunday, 24 February 2008, after receiving a censorship order from the government to

block YouTube (due to some materials posted on YouTube), Pakistan Telecom (AS17557)

decides to block the access to YouTube’s IP address, which includes several addresses in the

208.65.153.0/24 network space. The technique used in the blocking is the same as the

IP prefix hijacking, i.e., AS17557 started to announce the prefix 208.65.153.0/24 to its

peers.

These BGP announcements (BGP UPDATE messages) were supposed to be advertised

only to the peers within Pakistan, but a mistake was made, so the UPDATE messages were

advertised to one of the upstream peer, the Hong Kong-based PCCW Global (AS3491). AS3491

were supposed to catch this fake announcement, but it failed to do so, and forwarded the fake

announcement to the rest of the Internet. This resulted in the hijacking of YouTube traffic on a

global scale [?].

One of the prefixes announced by YouTube (AS36561) is 208.65.152.0/22. Since

208.65.153.0/24 is a more specific prefix inside the 208.65.152.0/22 address space,

packets going to 208.65.153.0/24 will be routed to Pakistan, instead of to YouTube.

Therefore, the prefix announced by Pakistan Telecom hijacked part of the YouTube’s prefix.

YouTube soon detected this, while trying to resolve the problem in the normal channel

(contacting PCCW to correct the mistake), YouTube tried to reclaim its IP prefixes by announcing

the same 208.65.153.0/24, but this did not completely solve the problem, because this

prefix has the same length as the one advertised by Pakistan, so which path is picked is up to the

path selection algorithm of each BGP router (the length of the AS path is one of the criteria).

With this announcement, YouTube could get some of the traffic back, but not all.

YouTube corrected that by announcing two more prefixes: 208.65.153.128/25 and

208.65.153.0/25. These prefixes cover the entire 208.65.153.0/24 space and they

are longer, so all the routers on the Internet started to route the traffic back to YouTube. Eventu-

ally, YouTube’s contact with PCCW went through, PCCW withdrew the fake announcements,

and the problem was fixed.

Helping AS-164 fight back. We can emulate what YouTube did and help AS-164 to reclaim

its network back during the attack. For each of the prefix advertised by the attacker, we will
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create two prefixes that are one bit longer than the one from the attacker. See the following:

10.164.0.0/25 covers 10.164.0.0******* 	By attacker
10.164.0.0/26 covers 10.164.0.00******
10.164.0.64/26 covers 10.164.0.01******

10.164.0.128/25 covers 10.164.0.1******* 	By attacker
10.164.0.128/26 covers 10.164.0.10******
10.164.0.192/26 covers 10.164.0.11******

We add these four prefixes to AS-164’s BGP configuration file using the static protocol.

The interface net0 is the one used by the BGP router to connect to AS-164’s internal network.

protocol static {
ipv4 { table t_bgp; };
route 10.164.0.0/26 via "net0" {

bgp_large_community.add(LOCAL_COMM);
};
route 10.164.0.64/26 via "net0" {

bgp_large_community.add(LOCAL_COMM);
};
route 10.164.0.128/26 via "net0" {

bgp_large_community.add(LOCAL_COMM);
};
route 10.164.0.192/26 via "net0" {

bgp_large_community.add(LOCAL_COMM);
};

}

After reloading the configuration, and wait for a few seconds, we can see that the ping

program will now get responses, indicating that the packets are now reaching the real destination

10.164.0.71. We get our traffic back. If we go to any BGP router, we can see the following

routing entries:

# ip route | grep 10.164
10.164.0.0/24 via 10.102.0.2 ... 	The original route
10.164.0.0/25 via 10.102.0.2 ... 	From the attacker
10.164.0.0/26 via 10.102.0.2 ... 	Fighting back
10.164.0.64/26 via 10.102.0.2 ... 	Fighting back
10.164.0.128/25 via 10.102.0.2 ... 	From the attacker
10.164.0.128/26 via 10.102.0.2 ... 	Fighting back
10.164.0.192/26 via 10.102.0.2 ... 	Fighting back

30.12.4 Filtering Out Spoofed Advertisement

In the YouTube incident, the problem was eventually resolved when PCCW, the upstream service

provider for Pakistan Telecom, withdrew the fake announcements. To emulate that, we can add

a filter rule to AS-2’s and AS-3’s configuration (at IX-100, where they peer with AS-150), so

when they import routes from AS-150, they only import the route to prefix 10.150.0.0/24.

By doing so, the fake routes announced by AS-150 will not be accepted by AS-2 or AS-3;

therefore, they will not be able to reach the Internet.
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protocol bgp c_as150 {
ipv4 {
table t_bgp;
import filter {

bgp_large_community.add(CUSTOMER_COMM);
bgp_local_pref = 30;
if (net != 10.150.0.0/24) then reject; 	The added rule
accept;

};
export all;
next hop self;

};
local 10.100.0.3 as 3;
neighbor 10.100.0.150 as 150;

}

30.12.5 Defending Against IP Prefix Hijacking
Defending against IP prefix hijacking is quite challenging. One defense is to use the filtering. As

we have discussed in § 30.6.2, BGP speakers can conduct ingress and egress filtering. When an

ISP’s BGP speaker receives a prefix announcement from its peer, it can check whether the route

is indeed owned by the peer. ISP can get the owner information for a prefix from the Internet

Routing Registry (IRR). How effective this mechanism is depends on whether the information

from IRR is complete or not, and whether the ISP is conducting the filtering correctly. To make

things worse, the topology of the ASes is quite complex and some peering relationship is private,

making route verification much more complicated, if possible at all [?].

Instead of using a central database like IRR for route verification, we can also use cryptogra-

phy to ensure a route’s authenticity. This can be done via Resource Public Key Infrastructure

(RPKI), also known as Resource Certification. RPKI is a specialized public key infrastructure

(PKI) framework. It enables an entity to verifiably assert that it is the legitimate holder of a set

of IP addresses or a set of Autonomous System (AS) numbers [Lepinski and Kent, 2012].

The details of RPKI are beyond the scope of this chapter. Its specification is documented in

a series of RFCs, RFC 6481, 6482, ..., to 6495. An open-source document project on RPKI can

be found from https://rpki.readthedocs.io. It provides detailed documentation on

RPKI. We recommend readers to get more information on RPKI from this site.

30.13 Summary
The Internet consists of many autonomous systems. Internally each AS manages its own

networks, but externally, ASes have to work together to advertise and forward route information,

so each AS knows where to route packets for any given destination. This is done through BGP.

In this chapter, we have conducted an in-depth study of BGP, which is quite complicated. With

the help of our SEED Internet Emulator, we are able to look at how BGP works and conduct

experiments on BGP in a real system. It allows us to connect the abstract BGP concepts with

a real-world experience. Based on the understanding of BGP, we have discussed the BGP

hijacking attack. We are able to conduct the actual attack inside the emulator.
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 Hands-on Lab Exercise
We have developed a SEED lab for this chapter. The lab is called BGP Exploration and Attack
Lab, and it is hosted on the SEED website: https://seedsecuritylabs.org.

 Problems and Resources
The homework problems, slides, and source code for this chapter can be downloaded from the

book’s website: https://www.handsonsecurity.net/.


